Download The avocado : botany, production and uses PDF

TitleThe avocado : botany, production and uses
TagsUniversity Of California
LanguageEnglish
File Size9.5 MB
Total Pages605
Table of Contents
                            Contents
Contributors
Preface
1 Introduction
2 History, Distribution and Uses
3 Taxonomy and Botany
4 Genetics and Breeding
5 Ecology: Climate and Soils
6 Reproductive Biology
7 Ecophysiology
8 Cultivars and Rootstocks
9 Propagation
10 Biotechnology
11 Irrigation and Mineral Nutrition
12 Crop Management
13 Foliar, Fruit and Soilborne Diseases
14 Insect and Mite Pests
15 Harvesting, Packing, Postharvest Technology, Transport and Processing
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
Colour plates
                        
Document Text Contents
Page 2

The Avocado

Botany, Production and Uses
2nd Edition

Page 302

Biotechnology 289

of 5233 unigenes. Some of the most abundant
genes expressed in criollo avocado fruit have
been identified; among them are metallothe-
oneins involved in metal homeostasis, two
putative transcription factors, Ethylene
Response Factor and Auxin-repressed protein-
like gene, as well as pathogenic related genes,
i.e. an endochitinase and a protease inhibitor.
Other genes involved in the interactions of
avocado fruit with the fungus Colletotrichum
gloeosporioides as well as the interaction of
avocado root with the pathogen P. cinnamomi
have also been identified; these studies will
facilitate the design of more efficient strategies
to manage these important diseases.

Establishment of embryogenic lines from
immature zygotic embryos is now routine.
However, efforts are needed to improve
embryogenic culture induction in explants of
adult origin such as nucellus. Methods for
transforming avocado embryogenic cultures
are currently available and, in some cases,
plants have been recovered from transgenic
embryos, although the methodology to con-
vert transformed somatic embryos into plants
needs to be improved. Continuing advances in
gene cloning linked to improvements of
avocado regeneration will be key factors for
improving this important crop species using
biotechnology.

Use of currently available cryopreserva-
tion techniques could be useful for preserving
selected embryogenic cell lines, and avoiding
the loss of embryogenic competence which
occurs with time. Efforts are needed to apply
these techniques to avocado shoot tips or
embryonic axes, in order to use this material as
backup for avocado germplasm collections
and to facilitate international movement of
important genetic resources, particularly from
the great genetic repositories of the USA, Israel,
Mexico and Australia.

Acknowledgments

Support provided by research projects AGL2008-
05453-C02-01 and AGL 2011-30354-C02-01
(PLAN NACIONAL I+D+I, MEC, Spain), and
FEDER EU funds, the California Avocado
Commission and the USDA TSTAR Special
Grants programme (USA), Campo Experimental
Uruapan CIRPAC-INIFAP Michoacan, Consejo
Nacional de Ciencia y Tecnologia (CONACYT-
México) research projects MOD-ORD-03-07
000126262 and 53062 as well as Coordina-
ción de la Investigación Científica-Universidad
Michoacana de San Nicolás de Hidalgo research
project 2.2 (México), is gratefully acknowledged.

References

Aaouine, M. (1986) Tissue culture investigation of graft incompatibility among Persea species. PhD thesis,
University of California, Riverside, California.

Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto,
K. and Araki, T. (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the
shoot apex. Science 309, 1052–1056.

Albert, V.A., Soltis D.E., Carlson, J.E., Farmerie, W.G., Wall, P.K., Ilut, D.C., Solow, T.M., Mueller, L.A.,
Landherr, L.L., Hu, Y., Buzgo, M., Kim, S., Yoo, M.J., Frohlich, M.W., Perl-Treves, R., Schlarbaum, S.E.,
Bliss, B.J., Zhang, X., Tanksley, S.D., Oppenheimer, D.G., Soltis, P.S., Ma, H., DePamphilis, C.W. and
Leebens-Mack, J.H. (2005) Floral gene resources from basal angiosperms for comparative genomics
research. BMC Plant Biology 5, 1–15.

Altabella, T. and Chrispeels, M.J. (1990) Tobacco plants transformed with the bean aai gene express an inhibi-
tor of insect a-amylase in their seeds Plant Physiology 93, 805–810.

Anderson, W.C. (1975) Propagation of rhododendrons by tissue culture. Part I. Development of a culture
medium for multiplication of shoots. International Plant Propagators’ Society Combined Proceedings 25,
129–135.

Arrillaga, I., Marzo, T. and Segura, J. (1991) Micropropagation of juvenile and adult Sorbus domestica L. Plant
Cell, Tissue and Organ Culture 27, 341–348.

Avenido, R.A., Galvez, H.F., Dimaculangan, J.G., Welgas, J.L., Frankie, R.B. and Damasco, O.P. (2009)
Somatic embryogensis and embryo culture coupled with gamma irradiation for generating avocado

Page 303

290 F. Pliego-Alfaro et al.

(Persea americana Miller) mutants in the Philippines. In: Induced Mutation in Tropical Fruit Trees, IAEA-
TECDOC-1615. International Atomic Energy Agency, Vienna, pp. 47–69.

Azcón-Aguilar, C., Barceló, A., Vidal, M.T. and de la Viña, G. (1992) Further studies on the influence of mycor-
rhizae on growth and development of micropropagated avocado plants. Agronomie 12, 837–840.

Baker, S.S., Wilhelm, K.S. and Thomashow, M.F. (1994) The 5’-region of Arabidopsis thaliana cor15a has cis-
acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Molecular Biology
24, 701–713.

Bapat, V.A., Trivedi, P.K., Ghosh, A., Sane, V.A., Ganapathi, T.R. and Nath, P. (2010) Ripening of fleshy fruit:
molecular insight and the role of ethylene. Biotechnology Advances 258, 94–107.

Barceló-Muñoz, A. (1995) Micropropagación de aguacate (Persea americana Mill.). Aspectos histológicos del
proceso de vitrificación. PhD Thesis, Facultad de Ciencias, Universidad de Málaga, Malaga, Spain. (In
Spanish.)

Barceló-Muñoz, A., Pliego-Alfaro, F. and Barea, J.M. (1990) Micropropagación de aguacate (Persea ameri-
cana Mill.) en fase juvenil. Actas de Horticultura 1, 503–506. (In Spanish.)

Barceló-Muñoz, A., Encina, C.L., Simón-Pérez, E. and Pliego-Alfaro, F. (1999) Micropropagation of adult
avocado. Plant Cell, Tissue and Organ Culture 58, 11–17.

Barceló-Muñoz, A., Zea-Bonilla, T., Pérez-Jiménez, R., López-Herrera, C. and Pliego-Alfaro, F. (2001)
Selección y micropropagación de portainjertos de aguacate tolerantes a la podredumbre blanca. In: IV
Congreso Ibérico de Ciencias Hortícolas, Cáceres, Spain. Libro de Resúmenes, p. 194. (In Spanish.)

Barringer, S.A., Yasseen, M.Y. and Splittstoesser, W.E. (1996) In vitro multiplication and plantlet establishment
of avocado. In Vitro Cell Developmental Biology – Plant 32, 119–121.

Barton, K.A., Whiteley, H.R. and Yang, N.S. (1987) Bacillus thuringiensis – endotoxin expressed in Nicotiana
tabacum provides resistance to lepidopteran insects. Plant Physiology 85, 1103–1109.

Bennett, S.T., Barnes, C., Cox, A., Davies, L. and Brown, C. (2005) Toward the 1,000 dollars human genome.
Pharmacogenomics 6, 373–382.

Bergh, B.O., Zentmyer, G.A., Whitsell, R.M., Boswell, S.B. and Storey, W.B. (1976) Avocado rootstock breed-
ing, especially in relation to Phytophthora. Acta Horticulturae 57, 237–240.

Biasi, L.A., Koller, O.C. and Kampf, A.N. (1994) Micropropagation of avocado ‘Ouro-Verde’ through tissue
culture of nodal segments. Pesquisa Agropecuaria Brasileira 29, 1051–1058.

Bitters, W.P., Murashige, T., Rangan, T.S. and Nauer, E. (1972) Investigation on establishing virus free citrus
plants through citrus culture. Proceedings of the International Organization of Citrus Virologists.
University of Florida Press, Gainesville, pp. 267–271.

Blickle, W., Mühlbach, H.P. and Sänger, H.L. (1986) Conditions for the isolation of protoplasts from callus
cultures of avocado (Persea americana Mill.). VI International Congress of Plant Tissue and Cell Culture,
Minneapolis, p. 384 (Abstract).

Blumenfeld, A. and Gazit, S. (1971) Growth of avocado fruit callus and its relation to exogenous and endog-
enous cytokinins. Physiologia Plantarum 25, 369–371.

Botella, J.R. (2002) Genes selected for their role in modifying post-harvest life. In: Valpuesta, V. (ed.) Fruit and
Vegetable Biotechnology. CRC Press LLC, Florida, USA, pp. 136–151.

Bozak, K.R., Yu, H., Sirevag, R. and Christoffersen, R.E. (1990) Sequence analysis of ripening-related cyto-
chrome P-450 cDNAs from avocado fruit. Proceedings of the National Academy of Science USA 87,
3904–3908.

Broglie, K., Chet, J., Holliday, M., Cressman, R., Biddle, Ph, Knowlton, S., Mauvais, C.J. and Broglie, R. (1991)
Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254,
1194–1197.

Brokaw, W.H. (1988) Avocado clonal rootstock propagation. Combined Proceedings of the International Plant
Propagators’ Society 37, 97–103.

Busov, V.B., Meilan, R., Pearce, D.W., Ma, C., Rood, S.B. and Strauss, S.H. (2003) Activation tagging of a
dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant
Physiology 132, 1283–1291.

Campos, P.S. and Pais, M.S.S. (1996) In vitro micropropagation of the macaronesian evergreen tree Persea
indica (L.) K. Spreng. In Vitro Cellular and Developmental Biology – Plant 32, 184–189.

Cao, H., Glazebrook, J., Clarke, J.D., Volko, S. and Dong, X.N. (1997) The Arabidopsis NPR1 gene that con-
trols systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57–63.

Cao, H., Li, X. and Dong, X.N. (1998) Generation of broad-spectrum disease resistance by overexpression of
an essential regulatory gene in systemic acquired resisance. Proceedings of the National Academy of
Science 95, 6531–6536.

Page 604

Index 559

top-working (field)
bark grafting 257–259
care and inarching 261
description 257
saw-kerf (notch graft) 259–260
stump preparation 257
sucker grafting 260–261

Tortix capensana see apple leaf roller
tree architecture see Rauh’s architectural model
Toxoptera aurantii see brown citrus aphid
trench layering 245–246
triazoles

fruit set and size 371–372
gibberellin biosynthesis 348
paclobutrazol

effect, mid-bloom sprays 348, 349
flowering 351
‘Fuerte’ and ‘Hass’ trees 348
yield and treatments 348, 349

spring shoot, development 348
ultra-high density 351
uniconazole

cropping patterns 350
flowering 351
yield and fruit size 348–350

Trioza anceps 436
Trioza perseae 436–437
tropical climates

characteristics, selected avocado cultivars
grown in Asia 216

Florida Avocado Administrative
Committee 216

major cultivars
Dominican Republic 219
Florida 216–219

minor cultivars (Florida) 219–221
rootstocks

Caribbean region and Brazil 221
informal and formal long-term field

evaluations 221
NaCl solution culture 222
Phytophthora root rot resistance 7, 8, 41,

53–54, 86, 90, 96–99, 102–104,
106–108, 110, 111, 181, 183,
184, 202, 222, 223, 234–236,
243, 251, 268, 278, 308, 316,
342–344, 346, 354, 356, 361,
372, 380, 397–405, 501

‘Waldin’ 222–223
West Indian (WI) and WI-hybrids 215–216

ultra-high density orchards, Chile
description 355, 356
development 355
factors and square planting 356
hillside soils 355–356

intensive management 356–357
production, orchard yields 357
rainfall 355
spacings, ‘Hass’ orchards 357
tree height 357
tree training 356

vapour pressure deficit (VPD)
dry climate 179
fruit production 176–177
modification, fruit tree canopies 177
and stomatal conductance 176, 177, 183

vegetative propagation 2, 7–8, 15, 17, 52
description 234–235
etiolated cuttings 246–247
genetic characteristics 243
layering 245–246
‘nurse seed/etiolation’ system 247–250
stem cuttings 243–245

Verticillium lecanii 431, 433
Verticillium wilt 54, 212, 354, 392

causal agent 412–413
description 412
epidemiology 413
management 413–414
symptoms 412

viroid resistance 286
volcanic upland soils, Mexico

agronomic features 108–109
andosols 108
‘avocado belt’ 108
chemical reactions 108
oxisols and ultisols 108
phosphorus 108
weathering 108

VPD see vapour pressure deficit (VPD)

water-deficit stress 121
water stress

anatomical features 179–180
description 178
evolution 179
‘Hass’ avocado trees 179
net CO2 assimilation and intercellular

CO2 concentration 179
stomatal conductance 178

net photosynthesis, crop canopy 179
osmotic adjustment 178
plant water status 180
polyphenol oxidase activity 180
stem water potentials 179
temperature and VPD 178
trunk diameter 180
water stress 180
xylem pressure potentials 178

Page 605

560 Index

western avocado leafroller 454
Western flower thrips 446
whiteflies

Japanese bayberry 429
red banded 423, 429

white root rot see Rosellinia root rot
white wax scale 431
wind 90, 93, 94, 96, 302, 309, 322, 364,

491, 509
damage 185–186
transpiration and evaporation 185
tree growth and water loss 185
velocities 185

Woody Plant Medium (WPM) 269
WPM see Woody Plant Medium (WPM)

xanthophyll 172–173
Xyleborus glabratus 392–393, 467–468

Xyleborus spp. 467
Xylosandrus 467

yellow-edged stinkbugs 440
yield

girdling effects 369–370
late harvesting effects 363–365
high density orchards 357–367
low yield problem 42, 342
potential yield 5, 8

zinc (Zn)
concentration 324, 501
deficiency 203, 323, 388
leaves, symptoms 323–324
soil and foliar sprays 324

Ziziphus sp. 456

Similer Documents