Download Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing, 2nd ed. (Fortran Numerical Recipes 2) PDF

TitleNumerical Recipes in Fortran 90: The Art of Parallel Scientific Computing, 2nd ed. (Fortran Numerical Recipes 2)
Author
TagsFortran
LanguageEnglish
File Size3.2 MB
Total Pages572
Table of Contents
                            Numerical Recipes in Fortran 90 Second Edition, Volume 2
Contents
Preface to Volume 2
Foreword by Michael Metcalf
License Information
Chapter 21. Introduction to Fortran 90 Language Features
	21.0 Introduction
	21.1 Quick Start: Using the Fortran 90 Numerical Recipes Routines
	21.2 Fortran 90 Language Concepts
	21.3 More on Arrays and Array Sections
	21.4 Fortran90 Intrinsic Procedures
	21.5 Advanced Fortran 90 Topics
	21.6 And Coming Soon: Fortran 95
Chapter 22. Introduction to Parallel Programming
	22.0 Why Think Parallel?
	22.1 Fortran 90 Data Parallelism: Arrays and Intrinsics
	22.2 Linear Recurrence and Related Calculations
	22.3 Parallel Synthetic Division and Related Algorithms
	22.4 Fast Fourier Transforms
	22.5 Missing Language Features
Chapter23. Numerical Recipes Utility Functions for Fortran 90
	23.0 Introduction and Summary Listing
	23.1 Routines That Move Data
	23.2 Routines Returning a Location
	23.3 Argument Checking and Error Handling
	23.4 Routines for Polynomials and Recurrences
	23.5 Routines for Outer Operations on Vectors
	23.6 Routines for Scatter with Combine
	23.7 Routines for Skew Operations on Matrices
	23.8 Other Routine(s)
Fortran 90 Code Chapters B1–B20
B1. Preliminaries
B2. Solution of Linear Algebraic Equations
B3. Interpolation and Extrapolation
B4. Integration of Functions
B5. Evaluation of Functions
B6. Special Functions
B7. Random Numbers
B8. Sorting
B9. Root Finding and Nonlinear Sets of Equations
B10. Minimization or Maximization of Functions
B11. Eigensystems
B12. Fast Fourier Transform
B13. Fourier and Spectral Applications
B14. Statistical Description of Data
B15. Modeling of Data
B16. Integration of Ordinary Differential Equations
B17. Two Point Boundary Value Problems
B18. Integral Equations and Inverse Theory
B19. Partial Differential Equations
B20. Less-Numerical Algorithms
C1. Listing of Utility Modules (nrtype and nrutil)
	C1.1 Numerical Recipes Types (nrtype)
	C1.2 Numerical Recipes Utilities (nrutil)
C2. Alphabetical Listing of Explicit Interfaces
C3. Index of Programs and Dependencies (Vol. 2)
References
General Index to Volumes 1 and 2
                        
Document Text Contents
Page 287

S
a

m
p

le
p

a
g

e
fro

m
N

U
M

E
R

IC
A

L
R

E
C

IP
E

S
IN

F
O

R
T

R
A

N
9

0
: T

h
e
A

rt o
f P

A
R

A
L
L
E

L
S

cie
n
tific C

o
m

p
u
tin

g
(IS

B
N

0
-5

2
1
-5

7
4

3
9
-0

)
C

o
p

yrig
h

t (C
) 1

9
8

6
-1

9
9

6
b

y C
a

m
b

rid
g

e
U

n
ive

rsity P
re

ss.
P

ro
g
ra

m
s C

o
p
yrig

h
t (C

) 1
9
8
6
-1

9
9
6
b

y N
u
m

e
rica

l R
e
cip

e
s S

o
ftw

a
re

.
P

e
rm

issio
n

is g
ra

n
te

d
fo

r in
te

rn
e

t u
se

rs to
m

a
ke

o
n
e
p

a
p
e
r co

p
y fo

r th
e
ir o

w
n
p

e
rso

n
a
l u

se
. F

u
rth

e
r re

p
ro

d
u
ctio

n
, o

r a
n
y co

p
yin

g
o

f m
a

ch
in

e
-

re
a

d
a

b
le

file
s (in

clu
d

in
g

th
is o

n
e

) to
a

n
y se

rve
r

co
m

p
u
te

r, is strictly p
ro

h
ib

ite
d
. T

o
o

rd
e
r N

u
m

e
rica

l R
e
cip

e
s b

o
o
ks,

d
iske

tte
s, o

r C
D

R
O

M
s

visit w
e

b
site

h
ttp

://w
w

w
.n

r.co
m

o
r ca

ll 1
-8

0
0
-8

7
2
-7

4
2
3
(N

o
rth

A
m

e
rica

o
n
ly),

o
r se

n
d
e

m
a
il to

tra
d
e
@

cu
p
.ca

m
.a

c.u
k (o

u
tsid

e
N

o
rth

A
m

e
rica

).

Chapter B10. Minimization or
Maximization of Functions

SUBROUTINE mnbrak(ax,bx,cx,fa,fb,fc,func)
USE nrtype; USE nrutil, ONLY : swap
IMPLICIT NONE
REAL(SP), INTENT(INOUT) :: ax,bx
REAL(SP), INTENT(OUT) :: cx,fa,fb,fc
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), PARAMETER :: GOLD=1.618034_sp,GLIMIT=100.0_sp,TINY=1.0e-20_sp

Given a function func, and given distinct initial points ax and bx, this routine searches
in the downhill direction (defined by the function as evaluated at the initial points) and
returns new points ax, bx, cx that bracket a minimum of the function. Also returned are
the function values at the three points, fa, fb, and fc.
Parameters: GOLD is the default ratio by which successive intervals are magnified; GLIMIT

Similer Documents