Download New Chemical Tools for Fluorescent Detection of Hydrogen Peroxide in Living Cells by ... PDF

TitleNew Chemical Tools for Fluorescent Detection of Hydrogen Peroxide in Living Cells by ...
Author
LanguageEnglish
File Size14.5 MB
Total Pages280
Table of Contents
                            1_Title page
2_Abstract
3_Table of Contents
Chapter 1 PL1
Chapter 2 PN1
	Portions of this work were published in the following scientific journal:
	Chung, C.; Srikun, D.; Lim, C. C.; Chang, C. J.; Cho, B. R. “A Two-Photon Fluorescent Probe for Ratiometric Imaging of Hydrogen Peroxide in Live Tissue.” Chemical Communication. 2011, Advance Article.
	Portions of this work were performed in collaboration with the following people:
	Chul Chung and Chang Su Lim performed two-photon spectroscopic analysis, confocal two-photon fluorescent imaging of PMA-stimulated macrophage RAW264.7, and two-photon imaging of hippocampal slices.
Chapter 3 SNAPTag
	Chapter 3
	Organelle-Targetable Fluorescent Probes for Imaging Hydrogen Peroxide in Living Cells via SNAP-Tag Protein Labeling
		Concluding Remarks
			Experimental Section
Chapter 4
Chapter 5 G5PAMAM
	Chapter 5
	A Dendrimer-Based Platform for Simultaneous Dual Fluorescence Imaging of Hydrogen Peroxide and pH Gradients Produced in Living Cells
	Portions of this work were published in the following scientific journal:
	Srikun, D.; Albers, A. E.; Chang, C. J. “A Dendrimer-Based Platform for Simultaneous Dual Fluorescence Imaging of Hydrogen Peroxide and pH Gradients Produced in Living cells.” Chemical Science. 2011, 2, 1156-1165.
	Portions of this work were performed in collaboration with the following people:
	Aaron E. Albers synthesized PF1-COOH.
	Abstract
	Introduction
	Results and Discussion
	Concluding Remarks
	Experimental Section
	Scheme 3. Synthesis of functionalized PAMAMs.
	Table 1. Molecular weight of functionalized PAMAM-G5 dendrimers
	Table 2. Spectroscopic properties of G5-SNARF2-Ac
	/
Appendix 1 styryl
Appendix 2 bodipyf
Appendix 3 rhodamine
Appendix 4 ncarbamate
Appendix 5 DDAO
Appendix 6 SNARf
Appendix 7 OxyR-cpRuby
                        
Document Text Contents
Page 1

New Chemical Tools for Fluorescent Detection of Hydrogen Peroxide in Living Cells



by


Duangkhae Srikun



A dissertation submitted in partial satisfaction of the


requirements for the degree of


Doctor of Philosophy


in


Chemistry


in the


Graduate Division


of the


University of California, Berkeley



Committee in charge:


Professor Christopher J. Chang, Chair
Professor Richmond Sarpong
Professor Michelle C. Chang

Professor David Schaffer



Fall 2011

Page 2

New Chemical Tools for Fluorescent Detection of Hydrogen Peroxide in Living Cells


© 2011


by Duangkhae Srikun

Page 140

134



Figure 11. Fluorescence detection of H2O2 in living HEK293T cells transiently expressing
SNAP-H2B and CLIP-NK1R. Cells were labeled with CPF1 and SPO1 (5 µM, 30 min in
HEPES). Unbound probe was removed by incubation in DMEM with 10% FBS for 90 min
Overlay image shows no overlap of signal from CPF1 and SPO1. Scale bar = 20 µm. (CPF1: λexc
= 488 nm, collection window 500 - 550 nm, SPO1: λexc = 543 nm, collection window 560 – 700
nm)

Page 141

135

References

1. Evans, J. L.; Maddux, B. A.; Goldfine, I. D. The Molecular Basis for Oxidative Stress-
Induced Insulin Resistance. Antioxid. Redox Signal. 2005, 7, 1040-1052.

2. Finkel, T.; Holbrook, N. J. Oxidants, Oxidative Stress and the Biology of Ageing. 2000,
408, 239-247.

3. Finkel, T.; Serrano, M.; Blasco, M. A. The Common Biology of Cancer and Ageing.
Nature 2007, 448, 767-774.

4. Harman, D. Aging - a Theory Based on Free-Radical and Radiation-Chemistry. J.
Gerontol. 1956, 11, 298-300.

5. Muller, F. L.; Lustgarten, M. S.; Jang, Y.; Richardson, A.; Van Remmen, H. Trends in
Oxidative Aging Theories. Free Radic. Biol. Med. 2007, 43, 477-503.

6. Barnham, K. J.; Masters, C. L.; Bush, A. I. Neurodegenerative Diseases and Oxidative
Stress. Nat. Rev. Drug Discov. 2004, 3, 205-214.

7. Droge, W.; Schipper, H. M. Oxidative Stress and Aberrant Signaling in Aging and
Cognitive Decline. Aging Cell 2007, 6, 361-370.

8. Houstis, N.; Rosen, E. D.; Lander, E. S. Reactive Oxygen Species Have a Causal Role in
Multiple Forms of Insulin Resistance. Nature 2006, 440, 944-948.

9. Salmeen, A.; Barford, D. Functions and Mechanisms of Redox Regulation of Cysteine-
Based Phosphatases. Antioxid. Redox Signal. 2005, 7, 560-577.

10. Winterbourn, C. C.; Hampton, M. B. Thiol Chemistry and Specificity in Redox
Signaling. Free Radic. Biol. Med. 2008, 45, 549-561.

11. Kumsta, C.; Jakob, U. Redox-Regulated Chaperones. Biochemistry 2009, 48, 4666-4676.
12. Lee, S. R.; Kwon, K. S.; Kim, S. R.; Rhee, S. G. Reversible Inactivation of Protein-

Tyrosine Phosphatase 1B in A431 Cells Stimulated with Epidermal Growth Factor. J.
Biol. Chem. 1998, 273, 15366-15372.

13. Rhee, S. G.; Yang, K. S.; Kang, S. W.; Woo, H. A.; Chang, T. S. Controlled Elimination
of Intracellular H2O2: Regulation of Peroxiredoxin, Catalase, and Glutathione Peroxidase
Via Post-Translational Modification. Antioxid. Redox Signal. 2005, 7, 619-626.

14. Choi, M. H.; Lee, I. K.; Kim, G. W.; Kim, B. U.; Han, Y. H.; Yu, D. Y.; Park, H. S.;
Kim, K. Y.; Lee, J. S.; Choi, C. H.; Bae, Y. S.; Lee, B. I.; Rhee, S. G.; Kang, S. W.
Regulation of PDGF Signalling and Vascular Remodelling by Peroxiredoxin II. Nature
2005, 435, 347-353.

15. Rhee, S. G. H2o2, a Necessary Evil for Cell Signaling. Science 2006, 312, 1882-1883.
16. Reddie, K. G.; Carroll, K. S. Expanding the Functional Diversity of Proteins through

Cysteine Oxidation. Curr. Opin. Chem. Biol. 2008, 12, 746-754.
17. Paulsen, C. E.; Carroll, K. S. Orchestrating Redox Signaling Networks through

Regulatory Cysteine Switches. ACS Chem. Biol. 2010, 5, 47-62.
18. Seo, Y. H.; Carroll, K. S. Quantification of Protein Sulfenic Acid Modifications Using

Isotope-Coded Dimedone and Iododimedone. Angew. Chem.-Int. Edit. 2011, 50, 1342-
1345.

19. Cuddihy, S. L.; Winterbourn, C. C.; Hampton, M. B. Assessment of Redox Changes to
Hydrogen Peroxide-Sensitive Proteins During Egf Signaling. Antioxid. Redox Signal.
2011, 15, 167-174.

20. Daou, G. B.; Srivastava, A. K. Reactive Oxygen Species Mediate Endothelin-1-Induced
Activation of Erk1/2, Pkb, and Pyk2 Signaling, as Well as Protein Synthesis, in Vascular
Smooth Muscle Cells. Free Radic. Biol. Med. 2004, 37, 208-215.

Page 279

275

Page 280

276

References

1. Belousov, V. V.; Fradkov, A. F.; Lukyanov, K. A.; Staroverov, D. B.; Shakhbazov, K. S.;
Terskikh, A. V.; Lukyanov, S. Genetically Encoded Fluorescent Indicator for
Intracellular Hydrogen Peroxide. Nat. Methods 2006, 3, 281-286.

2. Shaner, N. C.; Patterson, G. H.; Davidson, M. W. Advances in Fluorescent Protein
Technology. J. Cell Sci. 2007, 120, 4247-4260.

3. Verkhusha, V. V.; Lukyanov, K. A. The Molecular Properties and Applications of
Anthozoa Fluorescent Proteins and Chromoproteins. Nat. Biotechnol. 2004, 22, 289-296.

4. Zhang, J.; Campbell, R. E.; Ting, A. Y.; Tsien, R. Y. Creating New Fluorescent Probes
for Cell Biology. Nat. Rev. Mol. Cell Biol. 2002, 3, 906-918.

5. Miyawaki, A.; Llopis, J.; Heim, R.; McCaffery, J. M.; Adams, J. A.; Ikura, M.; Tsien, R.
Y. Fluorescent Indicators for Ca2+ Based on Green Fluorescent Proteins and Calmodulin.
Nature 1997, 388, 882-887.

6. Nagai, T.; Yamada, S.; Tominaga, T.; Ichikawa, M.; Miyawaki, A. Expanded Dynamic
Range of Fluorescent Indicators for Ca2+ by Circularly Permuted Yellow Fluorescent
Proteins. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 10554-10559.

7. Choi, H. J.; Kim, S. J.; Mukhopadhyay, P.; Cho, S.; Woo, J. R.; Storz, G.; Ryu, S. E.
Structural Basis of the Redox Switch in the Oxyr Transcription Factor. Cell 2001, 105,
103-113.

8. Kredel, S.; Oswald, F.; Nienhaus, K.; Deuschle, K.; Rocker, C.; Wolff, M.; Heilker, R.;
Nienhaus, G. U.; Wiedenmann, J. mRuby, a Bright Monomeric Red Fluorescent Protein
for Labeling of Subcellular Structures. PLoS One 2009, 4.

9. Shui, B.; Wang, Q.; Lee, F.; Byrnes, L. J.; Chudakov, D. M.; Lukyanov, S. A.;
Sondermann, H.; Kotlikoff, M. I. Circular Permutation of Red Fluorescent Proteins. PLoS
One 2011, 6.

10. Li, Y. K.; Sierra, A. M.; Ai, H. W.; Campbell, R. E. Identification of Sites within a
Monomeric Red Fluorescent Protein That Tolerate Peptide Insertion and Testing of
Corresponding Circular Permutations. Photochem. Photobiol. 2008, 84, 111-119.

11. Carlson, H. J.; Cotton, D. W.; Campbell, R. E. Circularly Permuted Monomeric Red
Fluorescent Proteins with New Termini in the Beta-Sheet. Protein Sci. 2010, 19, 1490-
1499.

Similer Documents