Download Membrane Operations - Innovative Separations and Transformations PDF

TitleMembrane Operations - Innovative Separations and Transformations
LanguageEnglish
File Size8.7 MB
Total Pages578
Table of Contents
                            Cover Page
Tite: Membrane Operations - Innovative Separations and Transformations
ISBN: 978-3527320387
Contents
	List of Contributors
	Introduction
	Part One Molecular Separation
	1 Molecular Modeling, A Tool for the Knowledge-Based Design of Polymer-Based Membrane Materials
	2 Polymeric Membranes for Molecular Separations
	3 Fundamentals of Membrane Solvent Separation and Pervaporation
	4 Fundamentals of Membrane Gas Separation
	5 Fundamentals in Electromembrane Separation Processes
	6 Fouling in Membrane Processes
	7 Energy and Environmental Issues and Impacts of Membranes in Industry
	8 Membrane Gas-Separation: Applications
	9 CO2 Capture with Membrane Systems
	10 Seawater and Brackish-Water Desalination with Membrane Operations
	11 Developments in Membrane Science for Downstream Processing
	12 Integrated Membrane Processes
	Part Two Transformation
	13 Fundamental of Chemical Membrane Reactors
	14 Mathematical Modeling of Biochemical Membrane Reactors
	15 Photocatalytic Membrane Reactors in the Conversion or Degradation of Organic Compounds
	16 Wastewater Treatment by Membrane Bioreactors
	17 Biochemical Membrane Reactors in Industrial Processes
	18 Biomedical Membrane Extracorporeal Devices
	19 Membranes in Regenerative Medicine and Tissue Engineering
	Part Three Membrane Contactors
	20 Basics in Membrane Contactors
	21 Membrane Emulsification: Principles and Applications
	22 Membrane Contactors in Industrial Applications
	23 Extractive Separations in Contactors with One and Two Immobilized L/L Interfaces: Applications and Perspectives
	Index
List of Contributors
Introduction
Part One Molecular Separation
1 Molecular Modeling, A Tool for the Knowledge-Based Design of Polymer-Based Membrane Materials
	1.1 Introduction
	1.2 Basics of Molecular Modeling of Polymer-Based Membrane Materials
	1.3 Selected Applications
		Hardand Software
		Simulation/Prediction of Transport Parameters and Model Validation
			Prediction of Solubility Parameters
			Prediction of Diffusion Constants
		Permeability of Small Molecules and Free-Volume Distribution
			Examples of Polymers with Low Permeability of Small Molecules
			Examples of Polymers with High Permeability of Small Molecules
			Examples of Polymers with Ultrahigh Permeability of Small Molecules
	1.4 Summary
	Acknowledgments
2 Polymeric Membranes for Molecular Separations
	2.1 Introduction
	2.2 Membrane Classification
	2.3 Membrane Polymer Characteristics
		Polymer Structure and Properties
		Membrane Polymer Selection
			Polymers for Porous Barriers
			Polymers for Nonporous Barrier
			Polymers for Charged Barrier
	2.4 Membrane Preparation
		Track-Etching of Polymer Films
		Phase Separation of Polymer Solutions
		Composite Membrane Preparation
		Mixed-Matrix Membranes
	2.5 Membrane Modification
	2.6 Established and Novel Polymer Membranes for Molecular Separations
		Ultrafiltration
		Reverse Osmosis and Nanofiltration
		Pervaporation
		Separations Using Ion-Exchange Membranes
	2.7 Conclusion and Outlook
	List of Abbreviations
3 Fundamentals of Membrane Solvent Separation and Pervaporation
	3.1 Introduction: Separation Needs for Organic Solvents
	3.2 Pervaporation and Nanofiltration Principles
	3.3 Membrane Materials and Properties for Solvent Separation
		Solvent-Stable Polymeric Membrane Materials
		Ceramic Membrane Materials
		Solvent Stability
		Structural Properties for Membranes in NF and PV
	3.4 Flux and Separation Prediction
		Flux Models in NF
		Rejection in NF
		Models for PV: from Solution-Diffusion to Maxwell-Stefan
		Hybrid Simulations
	3.5 Conclusions
	Acknowledgment
4 Fundamentals of Membrane Gas Separation
	4.1 Introduction
	4.2 Polymer Structure and Permeation Behavior
	4.3 Membranes from Glassy Polymers: Physical Aging
	4.4 Membranes from Rubbery Polymers: Enhanced CO2 Selectivity
	4.5 Summary
	Acknowledgments
5 Fundamentals in Electromembrane Separation Processes
	5.1 Introduction
	5.2 The Structures and Functions of Ion-Exchange Membranes
		Ion-Exchange Membrane Materials and Structures
		Preparation of Ion-Exchange Membranes
			Preparation Procedure of Heterogeneous Ion-Exchange Membranes
			Preparation of Homogeneous Ion-Exchange Membranes
			Special Property Membranes
	5.3 Transport of Ions in Membranes and Solutions
		Electric Current and Ohm's Law in Electrolyte Solutions
		Mass Transport in Membranes and Solutions
			The Driving Force and Fluxes in Electromembrane Processes
			Electrical Current and Fluxes of Ions
			The Transport Number and the Membrane Permselectivity
			Membrane Counterion Permselectivity
			Water Transport in Electrodialysis
	5.4 The Principle of Electromembrane Processes
		Electrodialysis
			Electrodialysis System and Process Design
			Electrodialysis Process Costs
		Electrodialysis with Bipolar Membranes
			Electrodialysis with Bipolar Membrane System and Process Design
			Electrodialysis with Bipolar Membrane Process Costs
		Continuous Electrodeionization
			System Components and Process Design Aspects
			Operational Problems in Practical Application of Electrodeionization
		Other Electromembrane Separation Processes
	List of Symbols
		Roman Letters
		Greek Letters
		Subscripts
		Superscripts
6 Fouling in Membrane Processes
	6.1 Introduction
		Characteristics of Fouling
		Causes of Fouling
		Fouling Mechanisms and Theory
		Critical and Sustainable Flux
		Fouling and Operating Mode
	6.2 Low-Pressure Processes
		Particulate Fouling
		Colloidal and Macrosolute Fouling
		Biofouling and Biofilms
		Case Studies
			Water Treatment and Membrane Pretreatment
			Membrane Bioreactor (MBR)
	6.3 High-Pressure Processes
		Particulate and Colloidal Fouling
		Biofouling
		Scale Formation
		Cake-Enhanced Osmotic Pressure
	6.4 Conclusions
7 Energy and Environmental Issues and Impacts of Membranes in Industry
	7.1 Introduction
	7.2 Hydrodynamic Sieving (MF and UF) Separations
	7.3 Fractionation of Low Molecular Weight Mixtures (NF, D, RO, GS)
	7.4 Reverse Osmosis - The Prototype Large-Scale Success
	7.5 Energy-Efficiency Increases - A Look to the Future
		Success Stories Built on Existing Membrane Materials and Formation Technology
		Future Opportunities Relying Upon Developmental Membrane Materials and Formation Technology
			High-Performance Olefin-Paraffin Separation Membranes
			Coal Gasification with CO2 Capture for Sequestration
	7.6 Key Hurdles to Overcome for Broadly Expanding the Membrane-Separation Platform
	7.7 Some Concluding Thoughts
	Acknowledgments
8 Membrane Gas-Separation: Applications
	8.1 Industry Background
	8.2 Current Membrane Gas-Separation Technology
		Membrane Types and Module Configurations
			Hollow Fine Fiber Membranes and Modules
			Capillary Fiber Membranes and Modules
			Flat-Sheet Membranes and Spiral-Wound Modules
		Module Size
	8.3 Applications of Gas-Separation Membranes
		Nitrogen from Air
		Air Drying
		Hydrogen Separation
		Natural-Gas Treatment
			Carbon-Dioxide Separation
			Separation of Heavy Hydrocarbons
			Nitrogen Separation from High-Nitrogen Gas
		Vapor/Gas Separations in Petrochemical Operations
	8.4 Future Applications
		CO2/N2 Separations
		CO2/H2 Separations
		Water/Ethanol Separations
		Separation of Organic Vapor Mixtures
	8.5 Summary/Conclusion
9 CO2 Capture with Membrane Systems
	9.1 Introduction
		CO2 and Greenhouse-Gas Problem
		CO2 Capture Processes and Technologies
	9.2 Membrane Processes in Energy Systems with CO2 Capture
		Processes Including Oxygen-Separation Membranes
		Precombustion Decarbonization Processes Including Hydrogen and Carbon Dioxide Membrane Separation
		Postcombustion Capture Processes with Membrane Separation
	9.3 Properties of Membranes for Hydrogen, Oxygen, and Carbon Dioxide Separation
		Membranes for Oxygen Separation in Precombustion Decarbonization and Oxy-Fuel Processes
			Flux and Separation
			Stability Issues
		Membranes for Hydrogen Separation in Precombustion Decarbonization
			Microporous Membranes Flux and separation
			Dense Metal Membranes Flux and separation
			Stability Issues
			Dense Ceramic Membranes Flux and separation
		Membranes for CO2 Separation in Precombustion Decarbonization
		CO2 Separation in Postcombustion Capture
			CO2 Separation Membranes
			Membrane Contactors for CO2 Capture
	9.4 Challenges in Membrane Operation
		Diffusion Limitation in Gas-Phase and Membrane Support
		Membrane Module Design and Catalyst Integration
	9.5 Concluding Remarks
	Acknowledgments
10 Seawater and Brackish-Water Desalination with Membrane Operations
	10.1 Introduction: The Need for Water
	10.2 Membrane Techniques in Water Treatment
	10.3 Reverse-Osmosis Desalination: Process and Costs
		Quality of Desalinated Water
		Environmental Aspects
		Energy Issues
	10.4 Treatment of Sewage and Polluted Water
		Membrane Bioreactors
		Reclaimed Wastewater Product Quality
	10.5 Fouling and Prevention
		How to Prevent
		Membrane Cleaning
	10.6 R&D Directions
		Impending Water Scarcity
		Better Membranes
		New Membranes-Based Desalination Processes
	10.7 Summary
11 Developments in Membrane Science for Downstream Processing
	11.1 Introduction
		Why Membranes for Downstream Processing?
	11.2 Constraints and Challenges in Downstream Processing
		External Mass-Transport Limitations
		Membrane Fouling
		Membrane Selectivity
	11.3 Concentration and Purification of Small Bioactive Molecules
		Electrodialysis
		Pervaporation
		Nanofiltration
	11.4 Concentration and Purification of Large Bioactive Molecules
		Ultrafiltration
		Membrane Chromatography
	11.5 Future Trends and Challenges
12 Integrated Membrane Processes
	12.1 Introduction
	12.2 Integrated Membrane Processes for Water Desalination
	12.3 Integrated Membrane Process for Wastewater Treatment
	12.4 Integrated Membrane System for Fruit-Juices Industry
	12.5 Integrated Membrane Processes in Chemical Production
	12.6 Conclusions
Part Two Transformation
13 Fundamental of Chemical Membrane Reactors
	13.1 Introduction
	13.2 Membranes
	13.3 Membrane Reactors
		Mass Balance
		Energy Balance
	13.4 Catalytic Membranes
	13.5 Thermodynamic Equilibrium in Pd-Alloy Membrane Reactor
	13.6 Conclusions
	List of Symbols
		Greek Letters
		Superscripts
	Acronyms
	Acknowledgments
14 Mathematical Modeling of Biochemical Membrane Reactors
	14.1 Introduction
	14.2 Membrane Bioreactors with Membrane as Bioreactor
		Enzyme Membrane Reactor
		Whole-Cell Membrane Bioreactor
	14.3 Membrane Bioreactors with Membrane as Separation Unit
		Moving-Bed Biofilm Membrane reactor
		Wastewater Treatment by Whole-Cell Membrane Reactor
		Membrane Fouling
	14.4 Mathematical Modeling of Membrane Bioreactor
		Modeling of Enzyme Membrane Layer/Biofilm Reactor
		Concentration Distribution and Mass-Transfer Rates for Real Systems
		Prediction of the Convective Velocity through Membrane with Cake and Polarization Layers
		Convective Flow Profile in a Hollow-Fiber Membrane
			Without Cake and Polarization Layers
			With Cake and Polarization Layer
		Mass Transport in the Feed Side of the Hollow-Fiber Membrane Bioreactor
	14.5 Modeling of the MBR with Membrane Separation Unit
		Moving-Bed-Biofilm Membrane Reactor
		Submerged or External MBR Process
		Fouling in Submerged Membrane Module
	14.6 Conclusions and Future Prospects
	Acknowledgement
	Appendix A
	Appendix B
	Appendix C
15 Photocatalytic Membrane Reactors in the Conversion or Degradation of Organic Compounds
	15.1 Introduction
	15.2 Fundamentals on Heterogeneous Photocatalysis
		Mechanism
		Photocatalysts: Properties and New Semiconductor Materials Used for Photocatalytic Processes
			Titanium Dioxide
			Modified Photocatalysts
	15.3 Photocatalytic Parameters
	15.4 Applications of Photocatalysis
		Total Oxidations
		Selective Oxidations
		Reduction Reactions
		Functionalization
		Hydrogen Production
		Combination of Heterogeneous Photocatalysis with Other Operations
	15.5 Advantages and Limits of the Photocatalytic Technologies
	15.6 Membrane Photoreactors
		Introduction
		Membrane Photoreactor Configurations
			Pressurized Membrane Photoreactors
			Sucked (Submerged) Membrane Photoreactors
			Membrane Contactor Photoreactors
		Parameters Influencing the Photocatalytic Membrane Reactors (PMRs) Performance
		Future Perspectives: Solar Energy
	15.7 Case Study: Partial and Total Oxidation Reactions in PMRs
		Degradation of Pharmaceutical Compounds in a PMR
		Photocatalytic Production of Phenol from Benzene in a PMR
	15.8 Conclusions
16 Wastewater Treatment by Membrane Bioreactors
	16.1 Introduction
	16.2 Membranes in Wastewater Treatment
		Background
		Membranes Applied to Wastewater Treatment
	16.3 Membrane Bioreactors (MBR)
		Membrane-Bioreactor Configurations
			Membrane Materials and Options
			Process Configurations
		Membrane-Bioreactor Basics
		Membrane Fouling
			Understanding Fouling
			Dealing with Fouling
			Cleaning Fouled Membranes
		Defining Operating Conditions and Parameters in MBR Processes
			Biological Operating Conditions
			Membrane Filtration Operation
			Optimizing MBR Operations
	16.4 Prospects and Predictions of the MBR Process
		Developments and Market Trends
		An Overview of Commercially Available Systems
			Flat-Sheet MBR Designs and Options
			Tubular/Hollow-Fiber MBR Designs and Options
	Nomenclature, References
17 Biochemical Membrane Reactors in Industrial Processes
	17.1 Introduction
	17.2 Applications at Industrial Level
		Pharmaceutical Applications
		Food Applications
		Immobilization of Biocatalysts on Membranes
	17.3 Conclusion
18 Biomedical Membrane Extracorporeal Devices
	18.1 General Introduction
		Use of Membranes in the Medical Field
		Historical Perspective
	18.2 Hemodialyzers
		Introduction
		Physical Principles of Hemodialysis
		Dialysis Requirements
		Mass Transfers in a Hemodialyzer
			Characterization of Hemodialyzers Performance
		Hemofiltration and Hemodiafiltration
		Various Types of Hemodialyzers
			Various Types of Membranes
			Optimization of Hemodialyzer Performance
	18.3 Plasma Separation and Purification by Membrane
		Introduction
		The Baxter Autopheresis C System for Plasma Collection from Donors
		Therapeutic Applications of Plasma Separation
			Plasma Exchange
			Selective Plasma Purification by Cascade Filtration
	18.4 Artificial Liver
		Introduction
		Physical Principles
		Convection+Adsorption Systems
		Diffusion+Adsorption Systems
		Future of Artificial Livers
	Conclusions
19 Membranes in Regenerative Medicine and Tissue Engineering
	19.1 Introduction
	19.2 Membranes for Human Liver Reconstruction
	19.3 Human Lymphocyte Membrane Bioreactor
	19.4 Membranes for Neuronal-Tissue Reconstruction
	19.5 Concluding Remarks
	Acknowledgments
Part Three Membrane Contactors
20 Basics in Membrane Contactors
	20.1 Introduction
	20.2 Definition of Membrane Contactors
	20.3 Mass Transport
	20.4 Applications
	20.5 Concluding Remarks
21 Membrane Emulsification: Principles and Applications
	21.1 Introduction
	21.2 Membrane Emulsification Basic Concepts
	21.3 Experimental Bases of Membrane Emulsification
		Post-Emulsification Steps for Microcapsules Production
		Membrane Emulsification Devices
	21.4 Theoretical Bases of Membrane Emulsification
		Torque and Force Balances
		Surface-Energy Minimization
		Microfluid Dynamics Approaches: The Shape of the Droplets
	21.5 Membrane Emulsification Applications
		Applications in the Food Industry
		Applications in the Pharmaceutical Industry
		Applications in the Electronics Industry
		Other Applications
	21.6 Conclusions
22 Membrane Contactors in Industrial Applications
	22.1 Air Dehumidification: Results of Demonstration Tests with Refrigerated Storage Cells and with Refrigerated Trucks
	22.2 Refrigerated Storage Cells
	22.3 Refrigerated Trucks
	22.4 Capture of CO2 from Flue Gas
23 Extractive Separations in Contactors with One and Two Immobilized L/L Interfaces: Applications and Perspectives
	23.1 Introduction
	23.2 Contactors with Immobilized L/L Interfaces
	23.3 Membrane-Based Solvent Extraction (MBSE) and Stripping (MBSS)
	Case Studies
	23.4 Pertraction through BLME
	Case Studies
	23.5 Pertraction through SLM
	Case Studies
	23.6 Comparison of Extractive Processes in HF Contactors and Pertraction through ELM
	23.7 Outlook
	Abbreviations
	Acknowledgement
Index
	a
	b
	c
	d
	e
	f
	g
	h
	i
	k
	l
	m
	n
	o
	p
	q
	r
	s
	t
	u
	v
	w
	y
	z
                        
Document Text Contents
Page 289

respond to specific controlled stimulus (pH, ionic strength, temperature, UV/Vis
radiation or magnetic field) or interact specifically through molecular recognition
with target solutes.

References

1 van Reis, R. and Zydney, A. (2007)
Journal of Membrane Science, 297, 16–50.

2 Hubbuch, J. and Kula, M.-R. (2007)
Journal of Non-Equilibrium
Thermodynamics, 32, 99–127.

3 Charcosset, C. (2006) Biotechnology
Advances, 24, 482–492.

4 Giorno, L. and Drioli, E. (2000) Trends in
Biotechnology, 18, 339–348.

5 Lopez, J.L. and Matson, S. (1997)
Journal of Membrane Science, 125,
189–211.

6 Sousa, H.A., Afonso, C.A.M., Mota, J.P.B.
and Crespo, J.G. (2005) Chemical
Engineering Research and Design, 83 (A3),
285–294.

7 Vogelaar, L., Lammertink, R.G.H. and
Wessling, M. (2006) Langmuir, 22,
3125–3130.

8 Susanto, H. and Ulbricht, M. (2007)
Langmuir, 23, 7818–7830.

9 He, D.M. and Ulbricht, M. (2007)
Macromolecular Chemical Physics, 208,
1582–1591.

10 Gronda, A.M., Buechel, S. and Cussler,
E.L. (2000) Journal of Membrane Science,
165 (2), 177–187.

11 Belfort, G., Pimbley, J.M., Greiner, A. and
Chung, K.-Y. (1993) Journal of Membrane
Science, 77, 1–22.

12 Kaur, J. and Agarwal, G.P. (2002)
Journal of Membrane Science, 196, 1–11.

13 Kelder, J.D.H., Janssen, J.J.M. and Boom,
R.M. (2007) Journal of Membrane Science,
304 (1–2), 50–59.

14 Santos, J.L.C., Geraldes, V., Velizarov, S.
and Crespo, J.G. (2007) Journal of
Membrane Science, 305 (1–2), 103–117.

15 Kane, R.S., Takayama, S., Ostuni, E.,
Ingber, D.E. and Whitesides, G.M. (1999)
Biomaterials, 20, 2363–2376.

16 Bacchin, P., Aimar, P. and Sanchez,
V. (1995) AIChE Journal, 41,
368–377.

17 Belfort, G., Davis, R.H. and Zydney, A.L.
(1994) Journal of Membrane Science, 96,
1–58.

18 Mcdonogh, R.M., Fane, A.G. and Fell,
C.J.D. (1989) Journal of Membrane Science,
43, 69–85.

19 Field, R.W., Wu, D., Howell, J.A. and
Gupta, B.B. (1995) Journal of Membrane
Science, 100, 259–272.

20 Howell, J.A. (1995) Journal of Membrane
Science, 107, 165–171.

21 Bacchin, P., Aimar, P. and Field, R.W.
(2006) Journal of Membrane Science, 281
(1–2), 42–69.

22 Sandblom, R.M. (1978) SW patent
74,16,257, 1974 and US patent
4,105,547.

23 Baruah, G.L., Nayak, A. and Belfort, G.
(2006) Journal of Membrane Science, 274,
56–63.

24 Lim, H.S., Han, J.T., Kwak, D., Jin, M. and
Cho, K. (2006) Journal American Chemical
Society, 128, 14458–14459.

25 Nayak, A., Liu, H. and Belfort, G. (2006)
Angewandt Chemie International, 45,
4094–4098.

26 Pujar, N.S. and Zydney, A.L. (1998)
Journal of Chromatography A, 796,
229–238.

27 Saksena, S. and Zydney, A.L. (1994)
Biotechnology & Bioengineering, 43,
960–968.

28 Garde, A., Rype, J.-U. and Jonsson, G.
(2002) WO patent 02/48044 A2.

29 Zelic, B., Gostovic, S., Vuorilehto, K.,
Vasic-Racki, D. and Takors F R.
(2004) Biotechnology & Bioengineering,
85 (6), 638–646.

262j 11 Developments in Membrane Science for Downstream Processing

Page 290

30 Poulin, J.F., Amiot, J. and Bazinet, L.
(2006) Journal of Biotechnology, 123 (3),
314–328.

31 Sch€afer, T., Bengtson, G., Pingel, H.,
B€oddeker, K.W. and Crespo, J.G. (1999)
Biotechnology & Bioengineering, 62 (4),
412–421.

32 Sch€afer, T. and Crespo, J.G. (2007) Journal
of Membrane Science, 301 (1–2), 46–56.

33 Stefer, B. and Kunz, B. (2002) Chemie
Ingenieur Technik, 74 (7), 1029–1034.

34 Maume, K.A. and Cheetham, P.S.J. (1991)
Biocatalysis, 5, 79.

35 Rutherford, S.W., Kurtz, R.E., Smith,
M.G.,Honnell, K.G. andCoons, J.E. (2005)
Journal of Membrane Science, 263 (1–2),
57–65.

36 Sch€afer, T., Vital, J. and Crespo, J.G. (2004)
Journal of Membrane Science, 241 (2),
197–205.

37 Marin, M., Hammami, C. and Beaumelle,
D. (1996) Journal of Food Engineering, 28
(3–4), 225–238.

38 Br€uschke, H.E.A., Schneider, W. and
Tusel, G.F. (1989) EP patent 0 332 738.

39 Baudot, A. and Marin, M. (1997) Food and
Bioproducts Processing, 75 (C2), 117–142.

40 Borjesson, J., Karlsson, H.O.E. and
Tragardh, G. (1996) Journal of Membrane
Science, 119 (2), 229–239.

41 Pereira, C.C., Rufino, J.R.M.,Habert, A.C.,
Nobrega, R., Cabral, L.M.C. and Borges,
C.P. (2005) Journal of Food Engineering, 66
(1), 77–87.

42 Alvarez, S., Riera, F.A., Alvarez, R., Coca,
J., Cuperus, F.P., Bouwer, S.T., Boswinkel,
C., van Gemert, R.W., Veldsink, J.W.,
Giorno, L., Donato, L., Todisco, S., Drioli,
E., Olsson, J., Tragardh,G., Gaeta, S.N. and
Panyor, L. (2000) Journal of Food
Engineering, 46 (2), 109–125.

43 Souchon, I., Pierre, F.X., Athes-Dutour, V.
and Marin, A. (2002) Desalination, 148
(1–3), 79–85.

44 Kattenberg, H.R. and Willemsen, J.H.A.
(1999) WO patent 00/38540.

45 Sarney, D.B., Hale, C., Frankel, G. and
Vulfson, E.N. (2000) Biotechnology and
Bioengineering, 69 (4), 461–467.

46 Butylina, S., Luque, S. and Nystrom, M.
(2006) Journal of Membrane Science, 280
(1–2), 418–426.

47 Visioli, F. and Galli, C. (1998) Journal of
Agricultural and Food Chemistry, 46 (10),
4292–4296.

48 Petroni, A., Blasevich, M., Salami, M.,
Papini, N., Montedoro, G.F. and Galli, C.
(1995) Thrombosis Research, 78 (2),
151–160.

49 Manna,C.,Galleti, P.,Maisto,G.,Cucciola,
V., D�Angelo, S. and Zappia, V. (2000)
FEBS Letters, 470 (3), 341–344.

50 Da Ponte, M.N., Santos, J.L., Matias, A.,
Nunes, A., Duarte, C. and Crespo, J.G.
(2007) patent WO2007013032.

51 van Reis, R., Gadam, S., Frautschy, L.N.,
Orlando, S., Goodrich, E.M., Saksena, S.,
Kuriyel, R., Simpson, C.M., Pearl, S. and
Zydney, A.L. (1997) Biotechnology and
Bioengineering, 56 (1), 71–82.

52 Ebersold, M.F. and Zydney, A.L.
(2004) Biotechnology Progress, 20 (2),
543–549.

53 van Reis, R., Brake, J.M., Charkoudian, J.,
Burns, D.B. and Zydney, A.L. (1999)
Journal of Membrane Science, 159 (1–2),
133–142.

54 van Reis, R. and Saksena, S. (1997)
Journal of Membrane Science, 129 (1),
19–29.

55 Crespo, J.G., Trotin, M., Hough, D. and
Howell, J.A. (1999) Journal of Membrane
Science, 155 (2), 209–230.

56 Portugal, C.A.M., Crespo, J.G. and Lima,
J.C. (2006) Journal of Photochemistry
and Photobiology B-Biology, 82 (2),
117–126.

57 Portugal, C.A.M., Lima, J.C. and Crespo,
J.G. (2006) Journal of Membrane Science,
284 (1–2), 180–192.

58 Portugal, C.A.M., Crespo, J.G. and Lima,
J.C. (2007) Journal of Membrane Science,
300 (1–2), 211–223.

59 Portugal, C.A.M., Lima, J.C. and Crespo,
J.G. (2008) Journal of Membrane Science,
321 (1), 69–80.

60 Gottschalk, U. (2005) Biopharm
International, 18 (3), 42–58.

References j263

Page 577

r
reactor design 215
recovery level 236
red water 228
redox potentials 337
reduction reactions 344
reflection coefficient 55
reflection curve 55
refractive index 70
refractive index change 73
refrigerated storage cells 507
regenerative medicine 433
rejection 55, 352
relaxation 383
removal of volatiles/gases 451
repulsive interactions 352
required membrane area 111
resistance 103, 215
resistance-in-series model 53, 322
respiratory quotient (RQ) 78
reverse osmosis 36, 222, 365, 385
reverse osmosis biofouling 132
reverse osmosis desalination 224, 266
reverse-osmosis desalination costs 224, 226
reverse-osmosis desalination process 226
reverse-osmosis membranes 222
reverse osmosis particulate fouling 130
reversible electrodialysis 224
Robeson plot 172, 181, 191
rotating membrane emulsification 476
rubbery membranes 182
rubbery polymers 13, 23, 25, 64–66, 75, 79,

182, 183, 207
rubbery polymers size selectivity 75
rubbery polymers vapor sorption isotherm 65
rubbery vapor-permeable membranes 184

s
salt rejection 225
sanitation 385
scale formation 130, 133
selective barrier structure 19
selective layer 74, 212
selective membranes 187
selective oxidations 343
selective plasma purification by cascade

filtration 423
selective therapeutic plasmapheresis 428
selectivity 63, 68, 73, 79, 172, 188, 208, 211,

249, 292
self-assembly 36
semiconductor 336
semicrystalline polymer 23, 68
semipermeable membrane 428, 434

separation 45, 206, 208, 209, 210
separation energy efficiency 139
separation factor 141
separation mechanism 207
sewage water 232
side-stream configuration 371
side-stream membrane modules 371
sieving mechanism 19
silica-based zeolite 208
silica membranes 208
size exclusion 208
skins 69
small bioactive molecules 249, 250
solar energy 353
solubility 5, 9, 207, 211
solubility coefficient 9, 66
solubility selectivity 66, 75, 76
solute transport 54, 55
solution-diffusion mechanism 53, 64, 66
solution-diffusion model 54, 55
solution-diffusion pervaporation 56
solvation intermolecular forces 143
solvent/nonsolvent system 29
solvent-resistant nanofiltration 47
solvent stability 52
solvent transport 54
sorption-diffusion-desorption process 56
sorption-diffusion models 56
sorption of gases 65
specific aeration demand 381
specific conductivity 89
specific desalination energy 105
specific volume 64
specimen size 69
Spiegler–Kedem model 54
spiral-wound modules 170
spiral wound membrane modules 180
stability 207, 208, 209, 210
stack design 108
static membrane emulsification 466
stationary permeate flux 322
steam reforming 202
stimulus-responsive membranes 248
stirred membrane emulsification 465
stirred-tank reactor 327
stirred vessel 476
stripper/scrubber 451
submerged membrane photocatalysis

reactor 350
submerged membrane photoreactors 349
suction of permeate 324
sulfur resistance 210
supported liquid membranes 450
surface kinetics 212

550j Index

Page 578

surface layer/cake 123
surface modification 32, 33
suspensions 463
sustainable flux 125, 377
sustainable growth 265
sustainable technical solutions 265
swelling 56, 85
synthetic membranes 19

t
therapeutic 422
therapeutic plasmapheresis 423
thermal expansion 207
thermal expansion coefficient 209
thermal expansion mismatch 215
thermally driven processes 149
thermally induced phase separation (TIPS)

27
thermal stability 24
thermodynamic inefficiency 145
thermodynamic potential gradients 207
thickness 70, 212
Thiele modulus 317
thin dense layer 64
thin dense skin 64
thin-film composite (TFC) 21
thin-film composite membranes 36
thin films 69, 70
thin Pd layers 209
thin selective membrane layers 212
tissue engineering 433
titanium dioxide 338
torque balance 483
tortuosity 68
total current 103
total energy 105, 111
total energy consumption 112
total membrane area 104
total oxidations 341
track-etching 26
transformation 285
transition temperature (Tg) 64
transmittance 418
transport 19, 213
transport mechanism 56
transport models 54

transport number 92
transport simulation/prediction 8
tubular membrane shapes 21
tubular/hollow-fiber membrane

bioreactor 388
tunnel mechanism 93
turbochargers 230

u
ultrafiltration 34, 141, 223, 256, 261, 327, 350
ultrafiltration membranes 365
uniform transmembrane pressure 247
unmodified membranes 437
unused energy 144

v
vapor/gas separations 183
vapor-induced phase separation (VIPS) 27
voltage drop 104
volume fraction 68
volume relaxation 69

w
wafer-like 215
waste water treatment 365
waste water treatment by whole-cell membrane

reactor 313
waste water-treatment process 233
waste water treatment membrane 364
water treatment membrane techniques 221
water desalination XXIII, 221, 456
water dissociation equilibrium 107
water gas shift (WGS) 202, 215
water gas shift reactor 154
water quality 222
wavelength/light intensity 341
whole-cell membrane bioreactor 312
Widom method 9
work exchangers 230

y
yearly growth 385
Young–Laplace 480

z
zeolite 208

Index j551

Similer Documents