Download Himalayan Journal of Sciences PDF

TitleHimalayan Journal of Sciences
LanguageEnglish
File Size16.6 MB
Total Pages225
Document Text Contents
Page 1

HIMALAYAN JOURNAL OF SCIENCES VOL 2 ISSUE 4 (SPECIAL ISSUE) JULY 2004 73

Volume 2 Issue 4 (special issue) July 2004 ISSN 1727 5210

Guest Editors
Kazunori ARITA

Pitambar GAUTAM

Lalu Prasad PAUDEL

Youichiro TAKADA

Teiji WATANABE

EXTENDED ABSTRACTS
The 19th Himalaya-Karakoram-Tibet Workshop

10-12 July, 2004
Niseko Higashiyama Prince Hotel

Niseko, Hokkaido, Japan

Page 2

HIMALAYAN JOURNAL OF SCIENCES VOL 2 ISSUE 4 (SPECIAL ISSUE) JULY 2004 75

The 19th Himalaya-Karakoram-Tibet Workshop

including a special session on

Uplift of Himalaya-Tibet Region and Asian Monsoon:
Interactions among Tectonic Events, Climatic Changes and Biotic Responses

during Late Tertiary to Recent Times

Co-hosted by

The Organizing Committee of
The 19th HIMALAYA-KARAKORAM-TIBET WORKSHOP

The 21st Century Center of Excellence (COE) Program on
“Neo-Science of Natural History – Origin and Evolution of Natural Diversity”

Hokkaido University

The 21st Century Center of Excellence (COE) Program on
“Dynamics of the Sun-Earth-Life Interactive System”

Nagoya University

Division of Earth and Planetary Sciences,
Graduate School of Science, Hokkaido University

Sponsored by

International Lithosphere Program (ILP)
Hokkaido Prefecture, Japan

Niseko Town, Japan
Tokyo Geographical Society
Geological Society of Japan

Japan Association for Quaternary Research
Tectonic Research Group of Japan

Kajima Foundation, Tokyo
Hokkaido Geotechnical Consultants Association, Sapporo

Hakusan Corporation, Fuchu, Tokyo
Kao Foundation for Arts and Sciences, Tokyo

Tethys Society, Sapporo
Confectionary Kinotoya, Sapporo

Shugakuso Outdoor Equipment, Sapporo
JEOL Ltd, Akishima, Tokyo

Page 112

HIMALAYAN JOURNAL OF SCIENCES VOL 2 ISSUE 4 (SPECIAL ISSUE) JULY 2004

EXTENDED ABSTRACTS: 19TH HIMALAYA-KARAKORAM-TIBET WORKSHOP, 2004, NISEKO, JAPAN

185

Tectonics and climate for the last ca. 35,000 years in the Kumaun
Himalaya, India

BS Kotlia

Department of Geology, Kumaun University, Nainital, 263 002, INDIA

For correspondence, E-mail: [email protected]

....................................................................................................................................................................................................................................................................

The Kumaun Lesser Himalayan terrain is defined by very active
intracrustal thrusts where the strain progressively builds up due
to horizontal compression. A number of thrusts/faults parallel
or oblique to the intracrustal boundary thrusts were reactivated
in the Late Pleistocene. The neotectonic movements along the
main and associated faults are manifest in the pronounced
geomorphic rejuvenation of the landscape such as off-setting
of the country rocks, formation and dislocation of terraces and
colluvial cones, deposition of unsorted huge gravels and debris
flows, structurally-controlled meandering, triangular fault facets,
fault scarps and steel waterfalls. The resultant stream ponding
culminated in the formation of lakes behind recently uplifted
blocks upstream of the active faults. Very recently, our group has
discovered a number of such tectonic lakes in the Kumaun
Himalaya, represented by 10-13 m thick succession of clays and
carbonaceous muds.

We suggest that the Kumaun Himalaya experienced four
major tectonic events at ca. 35 ka, 22-21 ka, 10 ka and 1.5-1.3 ka
BP. These events were responsible either for formation of lakes

or closure of some of the existing ones. Four minor magnetic
reversals are detected in the palaeolake profiles at ca. 35 ka,
28-25 ka. 22-21 ka and 8 ka BP. This is the first report of the minor
reversals in the lacustrine systems of the Indian sub-
continent.

Using a variety of multidisciplinary techniques, e.g.,
chronological, isotopes, clay mineralogy, elemental analysis and
pollen spectra, following climatic events are obtained for the
Kumaun Himalaya. Climatic amelioration (ca. 34.3-32.2 ka BP),
short spell of aridity (32.2-31.3 ka BP), warm and moist
conditions (31.3-30.0 ka BP), cool/arid climate (30.0-28.9 ka BP),
warm/humid conditions (28.9-27.4 ka BP), aridity (27.4-26.8 ka
BP), humid/moist conditions (26.8-25.3 ka BP), semi-arid
conditions (25.3-24.5 ka BP), humid conditions (24.5-22.4 ka BP),
aridity (22.4-21.7 ka BP), humid conditions (21.7-20.0 ka BP),
arid conditions (20.0-18.0 ka BP), semi-arid conditions (18.0-
17.0 ka BP), arid climate (17.0-15.2 ka BP), humid phase (7.3-4.2
ka BP) and aridity from ca. 4 ka BP onwards. Figure 1 shows high
resolution climatic changes between ca. 31 and 22 ka BP.

FIGURE 1. Climatic changes between ca. 31 and 22 ka BP in the Dulam area, Kumaun Lesser Himalaya, India

Page 113

HIMALAYAN JOURNAL OF SCIENCES VOL 2 ISSUE 4 (SPECIAL ISSUE) JULY 2004186

EXTENDED ABSTRACTS: 19TH HIMALAYA-KARAKORAM-TIBET WORKSHOP, 2004, NISEKO, JAPAN

Glacial Geomorphology and Ice Ages in Tibet and surrounding mountains

Matthias Kuhle

Geography and High Mountain Geomorphology; Geographical Institut, University of Göttingen, Goldschmidtstr. 5, D-37077
Göttingen, GERMANY

For correspondence, E-mail: [email protected]

....................................................................................................................................................................................................................................................................

Evidence for an ice sheet covering Tibet during the Last Glacial
Maximum (LGM: stage 3-2) means a radical rethinking about
glaciation in the Northern Hemisphere. The ice sheet’s
subtropical latitude, vast size (2.4 million km²) and high elevation
(∼6000 m asl) (Figure 2) caused a substantial, albedo-induced
cooling of the Earth’s atmosphere and the disruption of summer
monsoon circulation. The uplift of Tibet and the reaching of
specific threshold values of plateau elevation being synchronous
with the onset of the ice ages at ∼2.8 Ma B.P. and their
intensification from ∼1 Ma B.P. onwards, a causal link between
these factors seems likely.

During 35 campaigns of field investigations (Figure 1), the
ice-age inland glaciation of Tibet has been reconstructed on the
basis of classical glacigenic forms of erosion and accumulation
as well as on its accompanying sediments and the arrangement
of the positions. Absolute datings obtained by different methods
classify this glaciation as being from the LGM. With the help of
13 climate measuring stations, radiation and radiation balance
measurements have been carried out between 3300 and 6650 m

asl in Tibet. They indicate that the subtropical global radiation
reaches its highest energies on the High Plateau, thus making
Tibet today’s most important heating surface of the atmosphere.
At glacial times 70% of those energies were reflected into space
by the snow and firn of the 2.4 million km² extended glacier area
covering the upland. As a result, 32% of the entire global cooling
during the ice ages, determined by the albedo, was brought about
by this area– now the most significant cooling surface. The uplift
of Tibet to a high altitude about 2.8 Ma ago, coincides with the
commencement of the Quaternary Ice Ages. When the Plateau
was lifted above the snowline (=ELA) and glaciated, this cooling
effect gave rise to the global depression of the snowline and to
the first Ice Age. The interglacial periods are explained by the
glacial-isostatic lowering of Tibet by 650 m, having the effect that
the initial Tibet ice, which had evoked the build-up of the much
more extended lowland ices, could completely melt away in a
period of positive radiation anomalies. The next ice age begins,
when – because of the glacial-isostatic reveres uplift – the surface
of the Plateau has again reached the snowline. This explains, why

FIGURE 1. The areas in Tibet and High Asia under investigation by the author since 1973

Page 224

HIMALAYAN JOURNAL OF SCIENCES VOL 2 ISSUE 4 (SPECIAL ISSUE) JULY 2004296

EXTENDED ABSTRACTS: 19TH HIMALAYA-KARAKORAM-TIBET WORKSHOP, 2004, NISEKO, JAPAN

Abe M. 282
Abe M. 85
Acharyya SK. 87
Adhikari DP. 89
Ageta Y. 164
Ahmad T. 146
Aikman AB. 91
Aitchison JC. 112
Aoya M. 92
Appel E. 94, 140, 145
Araya K. 96
Arita K. 98, 158, 220, 279
Asahi K. 100
Awata Y. 132
Badengzhu. 112
Baqri SRH. 234, 262
Barley ME. 167, 251
Bataleva EA. 106
Baudraz V. 102
Berner Z. 197
Bhakuni SS. 129
Bhattarai TN. 285
Bhola AM. 247
Blaha U. 140
Bosch D. 113
Brunet P. 113
Burg J-P. 166
Buslov MM. 104, 106, 121
Bussy F. 113
Butler RF. 213
Carosi R. 108, 109
Catlos E. 102, 130
Célérier J. 110
Chamlagain D. 111
Chan AOK. 112
Chauvet F. 113
Chen D. 116
Chen X. 114
Chen Z. 114
Cheng H. 116
Chikita KA. 118
Chou Q. 284
Cosca M. 102
Cotten J. 113
Cui L. 236
Dangol V. 275
Danhara T. 162
De Grave J. 106, 121
DeCelles PG. 213
Deloule E. 116
Deng J. 192
Dhital MR. 123
Dicheng Z. 125, 195, 292
Dong G. 128, 294
Du A. 192
Dubey AK. 129
Dubey CS. 130, 175, 247, 284

Author Index
Volume 2, Issue 4

Dufour MS. 131
Dunlap WJ. 110
France-Lanord C. 156
Fu B. 132
Fujii R. 133, 190, 202, 203
Fushimi H. 135
Gajurel AP. 156, 242, 285
Gangyi Z. 136
Gautam CM. 138
Gautam P. 140
Gautam TP. 225
Ge X. 142, 199
Gehrels GE. 284
Genser J. 199
Ghimire M. 143
Ghimire S. 225
Goddu SR. 94, 145
Gouzu C. 146
Grove M. 284
Guillot S. 148
Guitang P. 125, 195, 292
Guo T. 294
Gupta A. 150
Gurung DR. 83
Hacker BR. 232
Harrison TM. 91, 110, 152
Hase Y. 202
Hayashi D. 111
Hayashi T. 154
Holt WE. 244
Hou Z. 192
Hu S. 94, 145
Hui L. 112
Huyghe P. 156
Hyodo H. 211
Igarashi Y. 94
Iizuka T. 280
Imayama T. 158
Itaya T. 146
Iturrizaga L. 160
Iwano H. 162
Iwata S. 164, 183
Jagoutz E. 166
Jagoutz O. 166
Jain AK. 167
Jain AK. 210, 251
Jan MQ. 168, 176
Jin B. 235
Jin W. 201
Jinfu D. 236
Joshi CC. 188
Jowhar TN. 170
Jun W. 274
Kaneko Yoshiyuki. 229
Kaneko Y. 280
Kano T. 171
Karma. 164

Katayama I. 280
Kausar AB. 173, 179, 208, 211,

229, 259
Kawakami T. 92
Ke S. 194
Keller F. 113
Kelty TK. 175, 284
Khan F. 212
Khan MA. 176
Khan SR. 176
Khan SR. 179, 211
Khan T. 176, 178, 208, 212, 259
Khanal NR. 180
Kimura K. 182, 239
Kita N. 212
Kitoh A. 85, 282
Koirala DR. 225
Komiya T. 280
Komori J. 183
Kono Y. 211
Koshimizu S. 89
Kotlia BS. 185
Kubo K. 173, 208, 259
Kuhle M. 186
Kumahara Y. 275
Kumar A. 217
Kumar R. 167
Kumar S. 188, 248
Kumar Y. 217
Kuwahara Y. 190, 222
Lal N. 167, 217
Lapierre H. 113
Lee J. 92
Li L. 194
Li Q. 289
Li Shengrong. 192
Li Shuwei. 196
Li W. 194
Li Yalin. 201
Li Yong. 201
Liang T. 194
Lin D. 91
Liquan W. 125, 195, 292
Liu C. 196
Liu D. 267
Liu J. 114
Liu SF. 287
Liu W. 268
Liu Yan. 197, 267
Liu Yongjiang. 142, 199
Liu Z. 201, 266
Lovera O. 284
Luo Z. 194, 196
Ma L. 142
Maemoku H. 275
Mahanti S. 250
Maki T1. 190

Page 225

HIMALAYAN JOURNAL OF SCIENCES VOL 2 ISSUE 4 (SPECIAL ISSUE) JULY 2004

EXTENDED ABSTRACTS: 19TH HIMALAYA-KARAKORAM-TIBET WORKSHOP, 2004, NISEKO, JAPAN

297

Maki T2. 202, 203
Mampuku M. 203
Manandhar IN. 205
Marston RA. 130
Maruyama S. 206
Mascle GH. 113
Massonne H-J. 197
Matsu’ura M. 258
Matsuoka A. 207
Matsuoka T. 277
Mattinson JM. 232
Mikoshiba MU. 173, 208, 259
Miller YV. 131
Miyazaki K. 211
Miyoshi N. 133
Mo X. 128, 196, 294
Montomoli C. 108, 109
Morishita Y. 212
Mugnier JL. 156
Mukherjee BK. 209
Mukherjee S. 210
Müntener O. 166
Murata M. 178, 179
Naito N. 164
Nakajima T. 211
Nakamura N. 273
Nakata T. 275
Narama C. 164
Neubauer F. 199
Ogasawara M. 212
Ohira H. 98
Ojha TP. 213
Orihashi Y. 214, 260
Ozawa H. 178, 179
Pandey A. 188
Pandey AK. 263
Pant RK. 224
Parcha SK. 216
Patel RC. 217
Paudayal KN. 218
Paudel LP. 220
Paudel MR. 190, 222
Pei J. 114, 231
Pengwu L. 235
Pettke T. 166
Phadtare NR. 224
Poudel CP. 225
Poudel KP. 205
Qinghui X. 236
Qiu R. 294
Qiusheng L. 235
Qu W. 192
Quade J. 213
Rai SM. 162, 225, 285
Rashid SA. 226
Regmi D. 227

Rehman HU. 173, 229
Ren S. 142, 231
Replumaz A. 148
Robyr M. 232
Roohi G. 234
Ruhland K. 224
Rui G. 235
Ruizhao Q. 236, 291
Sachan HK. 209
Saijo K. 239
Sakai A. 164
Sakai H. 133, 154, 162, 190, 202,

203, 214, 222, 225, 240, 260
Sakai T. 242
Sato N. 243
Schill E. 244
Shah MT. 246
Sharma BK. 130, 247
Sharma R. 265
Shichi K. 202
Shirahase T. 211
Shiraiwa T. 243
Singh B. 188, 248
Singh J. 250
Singh K. 250
Singh S. 167, 251
Smol JP. 224
Sonyok DR. 225
Steck A. 253
Strzerzynski P. 148
Su Z. 236
Sun G. 289
Sun Z. 114, 231
Suresh N. 263
Tabata H. 242, 256
Takada Y. 258
Takahashi Y. 173, 208, 259
Takahashi Y. 259, 208
Takasu A. 199
Takei M. 207
Takigami Y. 162, 214, 225, 260
Tanaka A. 277
Tanimura Y. 154
Tariq S. 262
Terabayashi M. 280
Thakur VC. 263
Tsutsumi H. 203
Uchida M. 154
Uchida M. 203
Ulak PD. 264
Ulmer P. 166
Umeda H. 202
Upreti BN. 225, 242, 285, 286
Van Den Haute P. 121
Vannay JC. 102, 113
Vennemann T. 102

Verma P. 265
Visonà D. 108, 109
Wallis SR. 92
Wang C. 201, 266
Wang E. 289
Wang Liang. 128
Wang Liangliang. 294
Wang S. 94
Wang X. 114
Wang Yanbin. 267
Wang Yu. 92, 268, 289
Waragai T. 270
Watanabe T. 100, 138, 180, 227, 273
Weaver BL. 168
Williams IS. 211
Xiao X. 197
Xiaoling X. 291
Xinsheng J. 125, 292
Xuanxue M. 125, 292
Xuchang X. 274
Yabuki H. 183
Yagi H. 275
Yahagi W. 154, 203
Yamada T. 243
Yamada Y. 277
Yamaguchi H. 279
Yamamoto H. 173, 229, 280
Yamamoto S. 280
Yamanaka T. 203
Yang N. 287
Yang Q. 207
Yang X. 94
Yang Z. 231
Yasunari T. 85, 282
Ye G. 235
Yi H. 201
Yin A. 152, 175, 284
Yokoyama K. 260
Yoshida M. 285, 286
Yu X. 196
Yuan S. 199
Yuan W. 192
Zhan H. 194
Zhang HP. 287
Zhang X. 289
Zhao S. 128
Zhao Xin. 196
Zhao Xixi. 201
Zhao Z. 128, 294
Zhaochong Z. 274
Zhidan Z. 125, 292
Zhiyong C. 236, 291
Zhongli L. 125, 292
Zhou S. 294
Zhu L. 266

NOTE: The author with a figure in boldface type is the principal author in the indicated page.

Similer Documents