Download Highest Resolution Fourier Transform Infrared Spectroscopy and Quantum Dynamics of Polyatomic ... PDF

TitleHighest Resolution Fourier Transform Infrared Spectroscopy and Quantum Dynamics of Polyatomic ...
Author
LanguageEnglish
File Size13.8 MB
Total Pages293
Table of Contents
                            Title
Contents
Abstract
Zusammenfassung
1 Introduction
2 Experimental
	2.1 Principles of interferometric FTIR spectroscopy
	2.2 Interferogram and spectrum
		2.2.1 Interferometric signal
		2.2.2 Truncation and apodization
		2.2.3 Absorption spectrum
	2.3 Line shape
		2.3.1 Natural line shape
		2.3.2 Doppler effect
		2.3.3 Collisional line shape
		2.3.4 Voigt profile
	2.4 Characteristics and properties of the FTIR/THz experimental setups
		2.4.1 The Bruker IFS 120/125 HR Zürich prototype 2001 setup
		2.4.2 The Bruker IFS 125 HR ETH-SLS prototype 2009 spectrometer
		2.4.3 Collisional cooling cell
	2.5 Calibration of the spectra
	2.6 Samples and materials
3 Theory
	3.1 Symmetry considerations, nuclear spin and statistical weights
		3.1.1 Symmetric top of C3v symmetry
		3.1.2 Asymmetric top
	3.2 Hamiltonian model
		3.2.1 Effective hamiltonian of C3v molecule
		3.2.2 Rovibrational functions of C3v molecules in symmetrized form
		3.2.3 Matrix elements of the effective Hamiltonian
		3.2.4 K=3 splitting of a1/a2 rotational states
		3.2.5 Effective hamiltonian of the C2v molecules studied here
	3.3 Selection rules
	3.4 Ground state combination differences
4 Spectra of fluoroform 12CHF3
	4.1 Introduction
	4.2 Survey of experimental results
	4.3 The spectral range 25 to 1500 cm-1 (0.7 to 44.9 THz)
		4.3.1 Far-infrared rotational spectrum of fluoroform from 25 to 65 cm-1
		4.3.2 The 3 fundamental and the associated 23-3 "hot" band
		4.3.3 The interacting polyad 2/5/3+6 in the region 1100-1250 cm-1
		4.3.4 Analysis of the dyad of coupled levels 4 and 23 near 1400 cm-1
	4.4 The 24 levels E and A1 - a component of a strong Fermi-resonance
	4.5 The CH- stretching fundamental - 1
	4.6 Discussion and conclusion
5 High-resolution spectra of 13CHF3
	5.1 Introduction
	5.2 Experimental
		5.2.1 Synthesis of 13CHF3
		5.2.2 Recorded spectra
	5.3 Ground state
	5.4 The spectra around 700 cm-1
		5.4.1 The 3 fundamental
		5.4.2 The "hot" band 23-3
	5.5 Spectra in the region of 1000–1200 cm-1
	5.6 The spectra around 1400 cm-1 - 4 coupled to 23
	5.7 The 24 (A1/E) band around 2700 cm-1
	5.8 The 1 - CH-stretching fundamental band
	5.9 Conclusions on the time dependent quantum dynamics of the CH-chromophore
6 High Resolution Analysis of the FTIR spectra of NF3
	6.1 Introduction
	6.2 Experimental
	6.3 Theory, symmetry and effective Hamiltonian model
	6.4 Ground state of NF3
	6.5 Re-analysis of NF3 spectra in the region of 800—2100 cm-1
		6.5.1 The 24 band
		6.5.2 The 1 fundamental
		6.5.3 The 2+4 combination band
		6.5.4 The 1+4 and 2+3 bands
		6.5.5 The 23 overtone
		6.5.6 The 1+3 combination band
	6.6 Analysis of NF3 spectra from 2000 to 3000 cm-1
		6.6.1 The 1+2+4 combination band
		6.6.2 The 2+23 band
		6.6.3 The 21+4 band
		6.6.4 The 1+2+3 combination band
		6.6.5 The 1+23 band
	6.7 Summary and conclusions
7 Methane 12CH4 and its isotopomers 13CH4 and 13CH3D
	7.1 Introduction
	7.2 Experimental details
	7.3 Integrated band strengths for 12CH4 and for 13CH4
	7.4 Ground state of 13CH3D
	7.5 Pure rotational spectra of CH3D measured at the Swiss Light Source
8 1,2-Dithiine - a candidate for detecting parity violation
	8.1 Introduction
	8.2 Theory
	8.3 FTIR measurements of 1,2-dithiine
	8.4 Results
	8.5 Discussion
9 Conclusions and outlook
A Irreducible rotational operators
B Elements of the G-Matrix
C Force field for 12CHF3
D Vibrational term values referred to the ground state as zero for 12CHF3
E Vibrational term values referred to the ground state as zero for the 13CHF3
List of figures
List of tables
Bibliography
                        
Document Text Contents
Page 1

Research Collection

Doctoral Thesis

Highest Resolution Fourier Transform Infrared Spectroscopy and
antum Dynamics of Polyatomic Molecules

Author(s):
Bolotova, Irina

Publication Date:
2017

Permanent Link:
https://doi.org/10.3929/ethz-b-000185000

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-b-000185000

Page 2

Diss. ETH Nr. 24124

Highest Resolution

Fourier Transform Infrared Spectroscopy

and�antum Dynamics of Polyatomic Molecules

A thesis submi�ed to a�ain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

IRINA BOLOTOVA

Master of Physics,

National Research Tomsk State University

born on 30th of May 1989

citizen of the Russian Federation

accepted on the recommendation of

Prof. Dr. Dr.h.c .M. �ack, examiner

Prof. Dr. F. Merkt, co-examiner

2017

Page 146

6.2. Experimental

Figure 6.3: Survey spectrum of the NF3 measured at T=80 K: spectrum I
of the Table 6.4 (top) and spectrum I I (bottom). Absorbance is shown as
decadic logarithm, lg(I0/I ).

each band measurements of di�erent spectral ranges were done at various conditions

summarised in Table 6.4. Individual spectral ranges and results of the high resolution

analysis will be discussed in more detail in the following sections of this Chapter.

Table 6.4: Overview of the high resolution spectra measured for NF3.

No. pa), Tb ), dc ), δν̃d ), le ) , Number Range, Date

mbar K mm cm−1 m of scans cm−1

I 0.07 80 0.8 0.00101 7.5 200 800-4000 13/03/13f )

II 0.08 80 0.8 0.00101 7.5 214 800-4000 14/03/13f )

III 1 122 0.8 0.0033 7.5 424 2000-7000 21/03/13д)

IV 1 120 0.8 0.0033 7.5 280 1800-3500 22/03/13h)

V 1 296 1.0 0.00101 16 400 900-1300 16/07/13i )

VI 0.1 296 1.0 0.00101 3.2 336 900-1300 18/07/13i )

VII 0.5 296 1.0 0.00101 16.0 148 900-1300 02/11/13i )

133

Page 147

Chapter 6. High Resolution Analysis of the FTIR spectra of NF3

No. pa), Tb ) , dc ), δν̃d ), le ) , Number Range, Date

mbar K mm cm−1 m of scans cm−1

VIII 0.2 296 0.8 0.00101 9.6 120 1050-2200 09/01/14i )

IX 6.9 296 0.8 0.0017 9.6 240 1800-3700 19/02/14д)

X 0.5 296 0.8 0.0017 3.2 100 1800-3600 07/03/14д)

XI 0.5+996(N2) 296 0.8 0.005 3.2 790 1800-3600 15/03/14
д)

XII 3.9 296 0.8 0.0017 19.2 400 1800-3700 31/03/14д)

XIII 0.05 296 0.8 0.00101 3.2 396 700-1450 25/06/14д)

XIV 1.0 296 1.0 0.0014 9.6 398 1100-1900 27/06/14i )

XV 2.2 296 3.15 0.0008 10.0 120 25-110 03/09/14k )

XVI 1.2 296 3.15 0.0008 10.0 120 25-110 04/09/14k )

XVII 3.5 100 3.15 0.0008 10.0 86 15-110 19/03/15k )

XVIII 0.7 296 0.8 0.0012 9.6 100 1500-2600 29/09/15f )

XIX 0.3 296 0.8 0.0012 9.6 100 1500-2600 30/09/15f )

a) Pressure in the cell; b) Temperature; c) Diameter of entering circular aperture;

d) Nominal resolution de�ned as δν̃ = 1/dMOPD;
e) Absorbing path length l in the (multire�ection) cell.

f) Source: Globar; Beamsplitter: KBr; Detector: MCT; Calibration gas: H2O.

g) Source: Tungsten; Beamsplitter: CaF2; Detector: InSb; Calibration gas: H2O.

h) Source: Globar; Beamsplitter: KBr; Detector: InSb; Calibration gas: H2O.

i) Source: Globar; Beamsplitter: KBr; Detector: MCT; Calibration gas: OCS.

k) Source: Synchrotron; Beamsplitter: Mylar 25µ; Detector: Bolometer; Calibration gas: H2O.

6.3 Theory, symmetry and e�ective Hamiltonian

model

Table 3.1 shows the character table for the point group C3v of NF3. Similar to the

case of NH3, NF3 in principle is non-rigid with the possibility of inversion, where the

inversion sub levels can be classi�ed according to the full permutation inversion group

S∗3 , which for this case has as subgroup the molecular symmetry group MS6 following

[Longuet-Higgins 1963], isomorphous to C3v , shown in the Table 3.1 as well together

134

Page 292

Bibliography

Van’t Ho�, J. H., Lehfeldt, R. A., et al. [1899] Lectures on theoretical and physical chem-
istry

Veltman, M. J. [2000] Nobel Lecture: From weak interactions to gravitation. Reviews of
Modern Physics, 72 (2), 341

Watson, J. K. [1977] Aspects of quartic and sextic centrifugal e�ects on rotational energy
levels, Elsevier Amsterdam, The Netherlands, vol. 6, pp. 1–89

Weinberg, S. [1967] A model of leptons. Physical review letters, 19 (21), 1264

Weiss, R. F., Mühle, J., Salameh, P. K., and Harth, C. M. [2008] Nitrogen tri�uo-
ride in the global atmosphere. Geophysical Research Letters, 35 (20), n/a–n/a,
DOI:10.1029/2008GL035913

Werner, H.-J., Knowles, P. J., Knizia, G., Manby, F. R., and Schütz, M. [2012] Molpro: a
general-purpose quantum chemistry program package. Wiley Interdisciplinary
Reviews: Computational Molecular Science, 2 (2), 242–253

Western, C. M. [2017] PGOPHER: A program for simulating rotational, vibrational
and electronic spectra. Journal of Quantitative Spectroscopy and Radiative Trans-
fer, 186, 221 – 242, DOI:http://dx.doi.org/10.1016/j.jqsrt.2016.04.010, satellite Re-
mote Sensing and Spectroscopy: Joint ACE-Odin Meeting, October 2015

Western, C. M. and Billinghurst, B. E. [2017] Automatic assignment and �t-
ting of spectra with pgopher. Phys. Chem. Chem. Phys., 19, 10222–10226,
DOI:10.1039/C7CP00266A

White, J. U. [1942] Long Optical Paths of Large Aperture. J. Opt. Soc. Am., 32 (5), 285–
288, DOI:10.1364/JOSA.32.000285

White, J. U. [1976] Very long optical paths in air. J. Opt. Soc. Am., 66 (5), 411–416,
DOI:10.1364/JOSA.66.000411

Widmer, R. [1989] Quantitative Untersuchungen zur 12C/13C-Isotopentrennungmit Hilfe
der Infrarot-Laserchemie, Dissertation ETH Nr. 21307, Eidgenössische Technis-
che Hochschule Zürich (ETH Zürich), Zürich

Wigner, E. P. [1965] Quantum Theory of Angular Momentum, Academic Press, New
York

Wong, J. S., Green, W. H., Cheng, C.-k., and Moore, C. B. [1987] Coupling of CH stretch-
ing and bending vibrations in trihalomethanes. The Journal of Chemical Physics,
86 (11), 5994 – 5999, DOI:http://dx.doi.org/10.1063/1.452486

Wu, C.-S., Ambler, E., Hayward, R., Hoppes, D., and Hudson, R. P. [1957] Experimental
test of parity conservation in beta decay. Physical review, 105 (4), 1413

Wyatt, R., Roberts, J. T., Wentz, R. E., and Wilt, P. M. [1969] Analyses of

279

Page 293

Bibliography

the Vibration-Rotation Bands of HCF3, PF5, and Cyclo-C3H6 by Com-
puter Techniques. The Journal of Chemical Physics, 50 (6), 2552 – 2558,
DOI:http://dx.doi.org/10.1063/1.1671414

Wyatt, R. E., Iung, C., and Leforestier, C. [1995] Toward ab Initio Intramolec-
ular Dynamics. Accounts of Chemical Research, 28 (10), 423 – 429,
DOI:10.1021/ar00058a004

Yamagata, Y. [1966] A hypothesis for the asymmetric appearance of biomolecules on
Earth. Journal of Theoretical Biology, 11 (3), 495–498

Yamaguchi, Y. and Schaefer, H. F. [2011] Analytic Derivative Methods in Molec-
ular Electronic Structure Theory: A New Dimension to Quantum Chem-

istry and its Applications to Spectroscopy, John Wiley & Sons, Ltd,
DOI:10.1002/9780470749593.hrs006

Ziurys, L. M. [2011] Millimeter and Submillimeter Wave Spectroscopy and Astrophysical
Applications, John Wiley & Sons, Ltd, DOI:10.1002/9780470749593.hrs038

280

Similer Documents