Download Heat Shock Proteins in Veterinary Medicine and Sciences PDF

TitleHeat Shock Proteins in Veterinary Medicine and Sciences
Author
LanguageEnglish
File Size7.3 MB
Total Pages396
Table of Contents
                            Preface
Contents
Editors Biography
Part I: Domestic Animals
	Chapter 1: Thermotolerance in Domestic Ruminants: A HSP70 Perspective
		1.1 Introduction
			1.1.1 Thermal Stress as the Important Factor Influencing Livestock Production
			1.1.2 Mechanisms Involved in Thermotolerance of Ruminants
			1.1.3 Components of Heat Shock Response in Livestock
			1.1.4 Types of HSP Associated with Heat Tolerance in Ruminant Livestock
			1.1.5 HSP70 as an Ideal Biological Marker to Quantify Heat Stress in Livestock
			1.1.6 Mechanisms of HSP70 Induced Thermotolerance
			1.1.7 Species and Breed Variations in HSP70 Gene and Its Expression Among Ruminants
			1.1.8 Seasonal Variations in HSP70 Expression
		1.2 Conclusions and Future Perspectives
		References
	Chapter 2: Expression Dynamics of Heat Shock Proteins (HSP) in Livestock under Thermal Stress
		2.1 Introduction
			2.1.1 Impact of Heat Stress on Cellular Functions
			2.1.2 Impact of Endocrine System on Cellular Heat Shock Response
			2.1.3 Thermal Stress and Expression of HSP
			2.1.4 Heat Shock Protein 70 (HSP70)
				2.1.4.1 Heat Shock Protein 90 (HSP90)
				2.1.4.2 Peripheral Blood Mononuclear Cells as the Contributory Source of HSP
				2.1.4.3 Extracellular HSP (eHSP)
			2.1.5 Linkage of HSP with Stimulation of Innate Immune Response
			2.1.6 HSP and Nitric Oxide Synthases (NOS)
			2.1.7 Oxidative Stress and HSP
				2.1.7.1 Antioxidants and HSP Expression
		2.2 Conclusions
		References
	Chapter 3: Heat Shock Protein Expression and Implications in Spontaneous Animal Tumors: Veterinary and Comparative Aspects
		3.1 Introduction
			3.1.1 Heat Shock Protein Expression in Spontaneous Animal Tumors
			3.1.2 HSP and Canine Osteosarcoma (OSA)
			3.1.3 HSP and Canine Mammary Tumors (CMTs)
			3.1.4 HSP and Canine Mast Cell Tumors (MCTs)
			3.1.5 HSP and Canine Prostate Carcinoma (PCa)
			3.1.6 HSP-Based Cancer Therapies in Veterinary Medicine: Current Knowledge and Future Perspectives
		3.2 Conclusions
		References
	Chapter 4: Heat Shock Protein as an Adjuvant in Veterinary Vaccines
		4.1 Introduction
		4.2 Heat Shock Proteins and its Classification
		4.3 The Initial Work on Immunological Property of HSP
		4.4 Heat Shock Proteins as Adjuvants
		4.5 Mechanism of Action
		4.6 Effects of HSP on Innate Immune Response
		4.7 Effect of HSP on Adaptive Immune Response
		4.8 Heat Shock Proteins in Veterinary Vaccines
		4.9 Role of Heat Shock Proteins in Immune-Surveillance and Cancer Immunotherapy
		4.10 Conclusions
		References
Part II: Poultry Animals
	Chapter 5: Antioxidant Systems and Vitagenes in  Poultry Biology: Heat Shock Proteins
		5.1 Introduction
			5.1.1 Heat Shock Response and Heat Sock Factors
				5.1.1.1 Chicken HSF
			5.1.2 Heat Shock Proteins
				5.1.2.1 Heat Shock Protein 70 (HSP70)
				5.1.2.2 Heat Shock Protein 90 (HSP90)
				5.1.2.3 Heat Shock Protein 32 (HSP32) (HO-1)
			5.1.3 Practical Applications of HSP Expression in Poultry Production
				5.1.3.1 Heat Stress and HSP in Avian Species
				5.1.3.2 Thermal Manipulation and HSP
				5.1.3.3 Heavy Metals and HSP
				5.1.3.4 Dietary AO and HSP
			5.1.4 Silymarin
			5.1.5 Nutritional Modulation of Vitagenes
			5.1.6 Conclusions and Future Directions
		References
	Chapter 6: Heat Shock Protein and Thermal Stress in Chicken
		6.1 Introduction
		6.2 Heat Stress
			6.2.1 Heat Shock Proteins
			6.2.2 Heat Stress and HSP
		6.3 Epigenetics and Thermal Manipulation
			6.3.1 HSP in Thermal Manipulated Chicken
		6.4 Conclusions
		References
Part III: Aquatic Animals
	Chapter 7: Heat Shock Proteins in Fish Health and Diseases: A Pharmacological Perspective
		7.1 Introduction
		7.2 Heat Shock Proteins – What Are They?
		7.3 Induction and Regulation of HSP Expression
			7.3.1 Categorization of HSP and Their Localization
			7.3.2 HSP and Cross-Protection
		7.4 HSP and the Immune Response
			7.4.1 Endogenous HSP as DAMPS
			7.4.2 Exogenous HSP as Antigens and Elicitors of the Immune System
		7.5 HSP as Vaccine for Use in Aquaculture
			7.5.1 HSP as Adjuvant in Vaccines
		7.6 Conclusions
		References
	Chapter 8: Physiological Role of Heat Shock Proteins, Molecular Function and Stress Removal in Fishes
		8.1 Introduction
		8.2 Discovery
		8.3 Size Dependent Classification and Functions of HSP
		8.4 Factors Regulating Heat Shock Proteins
			8.4.1 Generalized Stress Biomarkers in Environmental Toxicology
			8.4.2 Heat Shock Protein Involved in the Immune Response in Fish
			8.4.3 HSP Gene Involved in Immune Response to Pathogenic Challenges
			8.4.4 Heat Shock Protein in Cellular Response to Ultraviolet Radiation
		8.5 Heat Shock Protein Regulate Sexual Differential in Fish
		8.6 Molecular Functions Including Stress Removal as They Are Most Important HSP
			8.6.1 Heat Shock Protein Biomarkers in Heavy Metal Stress
			8.6.2 Heat Shock Protein Biomarkers in Cell Lines
		8.7 Conclusions and Future Perspective
		References
	Chapter 9: The Role of Heat Shock Proteins in Response to Extracellular Stress in Aquatic Organisms
		9.1 Introduction
			9.1.1 Heat Shock Proteins in Aquatic Organisms
				9.1.1.1 HSP100 Family
				9.1.1.2 HSP90 Family
				9.1.1.3 HSP70 Family
				9.1.1.4 HSP60 Family
				9.1.1.5 Small HSP Family
			9.1.2 Environmental Stressors and Responses of Heat Shock Proteins (HSP) in Aquatic Organisms
				9.1.2.1 Temperature
				9.1.2.2 Hypoxia
				9.1.2.3 Salinity
				9.1.2.4 Heavy Metal
				9.1.2.5 pH
				9.1.2.6 Organic Chemicals
				9.1.2.7 Biotic Stressors
			9.1.3 Mechanism and Pathways of HSP Induction in Response to Extracellular Stressors
			9.1.4 Application of HSP Based Health Therapy for Aquatic Organisms
		9.2 Conclusions
		References
	Chapter 10: Heat Shock Proteins in Aquaculture Disease Immunology and Stress Response of Crustaceans
		10.1 Introduction
			10.1.1 The HSP100 Family
			10.1.2 The HSP90 Family
			10.1.3 The HSP70 Family
			10.1.4 The HSP60 Family
			10.1.5 The HSP40 Family
			10.1.6 The Small HSP Family
			10.1.7 Aquaculture Diseases and Environmental Stresses of Crustaceans
				10.1.7.1 Pathogens and Shellfish Diseases
				10.1.7.2 Temperature, Desiccation and Hypoxia/Anoxia Stress
				10.1.7.3 Osmotic Stress
				10.1.7.4 Ultraviolet Radiation Stress
				10.1.7.5 Heavy Metals Stress
				10.1.7.6 Endocrine Disruptor Chemicals
				10.1.7.7 Other Toxicants
			10.1.8 Heat Shock Proteins in Aquaculture Disease Immunology and Stress Response
				10.1.8.1 The Structure and Functions of HSP
				10.1.8.2 HSP and Stress Response in Crustaceans
				10.1.8.3 HSP and Aquaculture Disease Immunity
				10.1.8.4 Exogenous HSP Stimulation
		10.2 Conclusions and Future Prospects
		References
Part IV: Parasites
	Chapter 11: Heat Shock Proteins in Parasitic Flatworms
		11.1 Introduction
			11.1.1 Overview of HSP in Parasitic Flatworms
			11.1.2 Secretion of Flatworm HSP
			11.1.3 Immunogenic and Immunomodulatory Properties of Flatworm HSP
			11.1.4 Roles of HSP in Flatworms and Their Infections
			11.1.5 HSP as Vaccine and Diagnostic Targets for Parasitic Diseases by Flatworms
		11.2 Conclusions
		References
	Chapter 12: Heat Shock Proteins: Role, Functions and Structure in Parasitic Helminths
		12.1 Introduction
			12.1.1 General Characteristics of HSP
			12.1.2 Expression of HSP under Stress Conditions
			12.1.3 Expression of HSP during Parasite Development
			12.1.4 Structure Analysis
			12.1.5 Hsp70 and Hsp90 Genes Are Useful as Phylogenetic Markers
			12.1.6 HSP Inhibitors and Parasitic Diseases
		12.2 Conclusions
		References
	Chapter 13: Heat Shock Proteins and Blood-Feeding in Arthropods
		13.1 Introduction
			13.1.1 Blood-Feeding as a Stressful Event
			13.1.2 Thermal Stress, Thermoregulation and Molecular Reparative Measures
			13.1.3 HSP70 (HSP70/HSC70) and Blood Feeding
		13.2 Conclusions
		References
	Chapter 14: Heat Shock Proteins in Leptospirosis
		14.1 Introduction
		14.2 Roles of HSP in Pathogenic and Saprophytic Leptospires Upon Heat Stress
		14.3 Roles of HSP in Immunology and Pathology of Leptospiral Infection
		14.4 Investigations of HSP by High-Throughput Mass Spectrometry (MS)-Based Proteomics and Immunoproteomics
			14.4.1 Cytosolic HSP
			14.4.2 Outer Membrane HSP
		14.5 HSP as Diagnostic Markers in Acute Leptospirosis
		14.6 HSP for Vaccine Development
		14.7 Conclusions and Future Perspectives
		References
	Chapter 15: Heat Shock Proteins in Vector-pathogen Interactions: The Anaplasma phagocytophilum Model
		15.1 Introduction
			15.1.1 Evolution of HSP and Identification of Homologs in the I. scapularis Tick Genome
			15.1.2 Role of HSP in Vector-Pathogen Interactions
			15.1.3 Role of HSP in the Interactions Between A. phagocytophilum and I. scapularis Tick Vector
			15.1.4 Anti-Apoptotic Function HSP
			15.1.5 HSP and Vector Tolerance to Pathogen Infection
			15.1.6 Possible Applications of HSP as Vaccine Antigens for the Control of Tick-Borne Diseases
		15.2 Conclusions
		References
                        
Document Text Contents
Page 1

Series Editors: Alexzander A. A. Asea · Stuart K. Calderwood
Heat Shock Proteins 12

Alexzander A. A. Asea
Punit Kaur Editors

Heat Shock
Proteins in
Veterinary
Medicine and
Sciences

Page 2

Heat Shock Proteins

Volume 12

Series editors
Alexzander A. A. Asea
Professor, Department of Medicine and
Director, Precision Therapeutics Proteogenomics Diagnostic Center
Eleanor N. Dana Cancer Center
University of Toledo College of Medicine and Life Sciences
Toledo, USA

Stuart K. Calderwood
Professor and Director, Division of Molecular and Cellular Radiation Oncology
Department of Radiation Oncology
Beth Israel Deaconess Medical Center and Harvard Medical School
Boston, USA

Page 198

197© Springer International Publishing AG 2017
A. A. A. Asea, P. Kaur (eds.), Heat Shock Proteins in Veterinary Medicine
and Sciences, Heat Shock Proteins 12, https://doi.org/10.1007/978-3-319-73377-7_7

Chapter 7
Heat Shock Proteins in Fish Health
and Diseases: A Pharmacological Perspective

Kartik Baruah, Parisa Norouzitallab, and Peter Bossier

Abstract Disease outbreaks are considered one of the largest constraints for the
sustainable development of the aquaculture sector. Though applications of antibiotics
manage to control and prevent infectious microbial diseases, however, its extensive
uses have also unavoidably resulted in the emergence of ‘superbugs’ that resist
conventional antibiotics. This calls for the development of new approaches for
combating infections. Recently, heat shock proteins have been suggested to mediate
the generation of strong innate and adaptive immune responses against many
diseases in plants and terrestrial animals, leading to the formulation of strategies to
fight infections. In this review, the potential of a new treatment, heat shock protein-
based therapy, for overcoming the menace of diseases in farmed aquatic animals of
commercial importance are discussed.

Keywords Aquaculture · Cross protection · Disease · Heat Shock Protein ·
Immunity · Immunostimulant

K. Baruah (*)
Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production,
Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium

Department of Animal Nutrition & Management, Faculty of Veterinary Medicine & Animal
Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
e-mail: [email protected]

P. Norouzitallab
Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production,
Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium

Laboratory of Immunology and Animal Biotechnology, Department of Animal Production,
Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium

P. Bossier
Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production,
Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73377-7_7&domain=pdf
mailto:[email protected]

Page 199

198

Abbreviations

APCs Antigen presenting cells
DAMPs Damage-associated molecular patterns
DC Dendritic cells
HSC Heat shock cognate protein
HSP Heat shock protein
IFN Interferons
IgA Mmunoglobulin A
IgG Mmunoglobulin G
IL Interleukin
MHC Major histocompatibility complex
TLRs Toll like receptors
TNF Tumor necrosis factor

7.1 Introduction

The farming of fishes and crustaceans remain important sources of food, nutrition,
income and livelihoods for hundreds of millions of people around the world. World
per capita fish supply reached a new record high of 20 kg in 2014, thanks to vigorous
growth in aquaculture, which now provides half of all fish for human consumption.
While the intensification of aquaculture has led to remarkable improvements in
productivity, it has also led to disease epidemics, involving bacterial, fungal, viral
and parasitic pathogens. Recently, organizations like FAO and European Union
considered disease outbreaks as a significant constraint to the development of this
sector worldwide as they cause great losses even up to 100%, with annual losses of
billions of dollars. Therefore, there is urgency for controlling disease outbreaks for
sustainability of the sector and to meet the growing demand for animal protein by
the increasing human population.

Hitherto, the use of conventional approaches, such as antibiotics has achieved
limited success in the prevention and cure of aquatic diseases as their repeated use has
been questioned on account of increased bacterial resistance to drugs and persistence
in the environment. Additional problems associated with the use of antibiotics include
the limited number of antibiotics registered for use in aquaculture and possible resi-
dues in the resulting aquaculture products. The significant disadvantages of the use of
antibiotics emphasize the need for alternative disease prevention techniques.

Disease prevention can be achieved by various ways. For instance, by introduction
of specific pathogen free broodstock, optimization of feed, the improvement of the
water quality, the avoidance of stress, and a good hygiene. In conjunction with
proper health management, prophylactic treatments, such as vaccination and
immunostimulation are indispensable tools for disease control in aquaculture
(Defoirdt et al. 2004).

K. Baruah et al.

Page 395

397

Suto, R., & Srivastava, P. K. (1995). A mechanism for the specific immunogenicity of heat shock
protein-chaperoned peptides. Science, 269, 1585–1588.

Takayama, S., Reed, J. C., & Homma, S. (2003). Heat-shock proteins as regulators of apoptosis.
Oncogene, 22, 9041–9047.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular
Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

Tatem, J., & Stollar, V. (1989). Effect of Sindbis virus infection on induction of heat shock proteins
in Aedes albopictus cells. Journal of Virology, 63, 992–996.

Terkawi, M.  A., Aboge, G., Jia, H., et  al. (2009). Molecular and immunological characteriza-
tion of Babesia gibsoni and Babesia microti heat shock protein-70. Parasite Immunology, 31,
328–340.

Teves, S. S., & Henikoff, S. (2013). The heat shock response: A case study of chromatin dynamics
in gene regulation. Biochemistry and Cell Biology, 91, 42–48.

Thomas, V., & Fikrig, E. (2007). Anaplasma phagocytophilum specifically induces tyrosine phos-
phorylation of ROCK1 during infection. Cellular Microbiology, 9, 1730–1737.

Thomas, S. (2016). Development of structure-based vaccines for Ehrlichiosis. Methods in
Molecular Biology, 1403, 519–534.

Tian, Z., Liu, G., Zhang, L., et al. (2011). Identification of the heat shock protein 70 (HLHsp70) in
Haemaphysalis longicornis. Veterinary Parasitology, 181, 282–290.

Tissières, A., Mitchell, H.  K., & Tracy, U.  M. (1974). Protein synthesis in salivary glands of
Drosophila melanogaster: Relation to chromosome puffs. Journal of Molecular Biology, 84,
389–398.

Vabulas, R. M., Wagner, H., & Schild, H. (2002). Heat shock proteins as ligands of toll-like recep-
tors. Current Topics in Microbiology and Immunology, 270, 169–184.

van Noort, J. M., Bsibsi, M., Gerritsen, W. H., et al. (2010). Alpha B-crystallin is a target for adap-
tive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions.
Journal of Neuropathology and Experimental Neurology, 69, 694–703.

van Noort, J. M., Bsibsi, M., Nacken, P., Gerritsen, W. H., & Amor, S. (2012). The link between
small heat shock proteins and the immune system. The International Journal of Biochemistry
& Cell Biology, 44, 1670–1679.

Van Zee, J. P., Schlueter, J. A., Schlueter, S., Dixon, P., Sierra, C. A., & Hill, C. A. (2016). Paralog
analyses reveal gene duplication events and genes under positive selection in Ixodes scapularis
and other ixodid ticks. BMC Genomics, 17, 241.

Vichido, R., Falcon, A., Ramos, J. A., et al. (2008). Expression analysis of heat shock protein 20
and rhoptry-associated protein 1a in sexual stages and kinetes of Babesia bigemina. Annals of
the New York Academy of Sciences, 1149, 136–140.

Villar, M., Ayllón, N., Busby, A. T., et al. (2010). Expression of heat shock and other stress response
proteins in ticks and cultured tick cells in response to Anaplasma spp. infection and heat shock.
The International Journal of Proteomics, 2010, 657261.

Villar, M., Ayllón, N., Alberdi, P., et al. (2015a). Integrated metabolomics, transcriptomics and
proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection
in tick cells. Molecular & Cellular Proteomics, 14, 3154–3172.

Villar, M., Ayllón, N., Kocan, K.  M., et  al. (2015b). Identification and characterization of
Anaplasma phagocytophilum proteins involved in infection of the tick vector, Ixodes scapu-
laris. PLoS ONE, 10, e0137237.

Weis, S., Carlos, A. R., Moita, M. R., et al. (2017). Metabolic adaptation establishes disease toler-
ance to sepsis. Cell, 169(7), 1263–1275.

Whitley, D., Goldberg, S. P., & Jordan, W. D. (1999). Heat shock proteins: A review of the molecu-
lar chaperones. Journal of Vascular Surgery, 29, 748–751.

Yu, A., Li, P., Tang, T., Wang, J., Chen, Y., & Liu, L. (2015). Roles of Hsp70s in stress responses of
microorganisms, plants, and animals. BioMed Research International, 2015, 510319.

15 Heat Shock Proteins in Vector-pathogen Interactions

Page 396

398

Zhang, T., Cui, X., Zhang, J., et al. (2015). Screening and identification of antigenic proteins from
the hard tick Dermacentor silvarum (Acari: Ixodidae). The Korean Journal of Parasitology,
53, 789–793.

Zhao, L., & Jones, W. A. (2012). Expression of heat shock protein genes in insect stress responses.
Invertebrate Survival Journal, 9, 93–101.

Zhou, J., Schmid, T., Frank, R., & Brüne, B. (2004). PI3K/Akt is required for heat shock proteins
to protect hypoxia-inducible factor 1 alpha form pVHL-independent degradation. The Journal
of Biological Chemistry, 279, 13506–13513.

Zugel, U., & Kaufmann, S. H. (1999). Role of heat shock proteins in protection from and patho-
genesis of infectious diseases. Clinical Microbiology Reviews, 12, 19–39.

Zuo, D., Subjeck, J., & Wang, X. Y. (2016). Unfolding the role of large heat shock proteins: New
insights and therapeutic implications. Frontiers in Immunology, 7, 75.

P. J. Espinosa et al.

Similer Documents