Download Controlled and Living Polymerizations: Methods and Materials PDF

TitleControlled and Living Polymerizations: Methods and Materials
LanguageEnglish
File Size9.2 MB
Total Pages638
Table of Contents
                            Cover Page
Title: Controlled and Living Polymerizations
ISBN 3527324925
Contents
Preface
List of Contributors
1 Anionic Vinyl Polymerization
	1.1 Introduction
		1.1.1 The Discovery of Living Anionic Polymerization
		1.1.2 Consequences of Termination- and Transfer-Free Polymerization
		1.1.3 Suitable Monomers
	1.2 Structure of Carbanions
	1.3 Initiation
		1.3.1 Anionic Initiators
		1.3.2 Experimental Considerations
	1.4 Mechanism of Styrene and Diene Polymerization
		1.4.1 Polymerization of Styrene in Polar Solvents: Ions and Ion Pairs
		1.4.2 Contact and Solvent-Separated Ion Pairs
		1.4.3 Polymerization of Styrene in Nonpolar Solvents: Aggregation Equilibria
			1.4.3.1 Polymerization in Pure Solvents
			1.4.3.2 Polymerization in Nonpolar Solvent in the Presence of Ligands
		1.4.4 Anionic Polymerization of Dienes in Nonpolar Solvent
			1.4.4.1 Kinetics
			1.4.4.2 Regiochemistry
		1.4.5 Architectural Control Using Chain-End Functionalization
	1.5 Mechanism of Anionic Polymerization of Acrylic Monomers
		1.5.1 Side Reactions of Alkyl (Meth)acrylate Polymerization
		1.5.2 Alkyl (Meth)acrylate Polymerization in THF
			1.5.2.1 Propagation by Solvated Ion Pairs
			1.5.2.2 Association of Enolate Ion Pairs and Their Equilibrium Dynamics
			1.5.2.3 Effect of Dynamics of the Association Equilibrium on the MWD
		1.5.3 Modification of Enolate Ion Pairs with Ligands: Ligated Anionic Polymerization
			1.5.3.1 Lewis Base (σ-Type) Coordination
			1.5.3.2 Lewis Acid (µ-Type) Coordination
		1.5.4 Metal-Free Anionic Polymerization
			1.5.4.1 Group Transfer Polymerization (GTP)
			1.5.4.2 Tetraalkylammonium Counterions
			1.5.4.3 Phosphorous-Containing Counterions
		1.5.5 Polymerization of Alkyl (Meth)acrylates in Nonpolar Solvents
			1.5.5.1 µ-Type Coordination
			1.5.5.2 σ, µ-Type Coordination
		1.5.6 Coordinative-Anionic Initiating Systems
			1.5.6.1 Aluminum Porphyrins
			1.5.6.2 Metallocenes
		1.5.7 Polymerization of N,N-Dialkylacrylamides
	1.6 Some Applications of Anionic Polymerization
	1.7 Conclusions and Outlook
	References
2 Carbocationic Polymerization
	2.1 Introduction
	2.2 Mechanistic and Kinetic Details of Living Cationic Polymerization
	2.3 Living Cationic Polymerization
		2.3.1 Monomers and Initiating Systems
		2.3.2 Additives in Living Cationic Polymerization
		2.3.3 Living Cationic Polymerization: Isobutylene (IB)
		2.3.4 β-Pinene
		2.3.5 Styrene (St)
		2.3.6 p-Methylstyrene (p-MeSt)
		2.3.7 p-Chlorostyrene (p-ClSt)
		2.3.8 2,4,6-Trimethylstyrene (TMeSt)
		2.3.9 p-Methoxystyrene (p-MeOSt)
		2.3.10 α-Methylstyrene (αMeSt)
		2.3.11 Indene
		2.3.12 N-Vinylcarbazol
		2.3.13 Vinyl Ethers
	2.4 Functional Polymers by Living Cationic Polymerization
		2.4.1 Functional Initiator Method
		2.4.2 Functional Terminator Method
	2.5 Telechelic Polymers
	2.6 Macromonomers
		2.6.1 Synthesis Using a Functional Initiator
		2.6.2 Synthesis Using a Functional Capping Agent
			2.6.2.1 Chain-End Modification
			2.6.2.2 Block Copolymers
	2.7 Linear Diblock Copolymers
	2.8 Linear Triblock Copolymers
		2.8.1 Synthesis Using Difunctional Initiators
		2.8.2 Synthesis Using Coupling Agents
	2.9 Block Copolymers with Nonlinear Architecture
		2.9.1 Synthesis of AnBn Hetero-Arm Star-Block Copolymers
		2.9.2 Synthesis of AA B, ABB, and ABC Asymmetric Star-Block Copolymers Using Furan Derivatives
		2.9.3 Block Copolymers Prepared by the Combination of Different Polymerization Mechanisms
			2.9.3.1 Combination of Cationic and Anionic Polymerization
			2.9.3.2 Combination of Living Cationic and Anionic Ring-Opening Polymerization
			2.9.3.3 Combination of Living Cationic and Radical Polymerization
	2.10 Branched and Hyperbranched Polymers
	2.11 Surface Initiated Polymerization – Polymer Brushes
	2.12 Conclusions
	References
3 Radical Polymerization
	3.1 Introduction
	3.2 Typical Features of Radical Polymerization
		3.2.1 Kinetics
		3.2.2 Copolymerization
		3.2.3 Monomers
		3.2.4 Initiators and Additives
		3.2.5 Typical Conditions
		3.2.6 Commercially Important Polymers by RP
	3.3 Controlled Reversible-Deactivation Radical Polymerization
		3.3.1 General Concepts
		3.3.2 Similarities and Differences Between RP and CRP
	3.4 SFRP: NMP and OMRP Systems – Examples and Peculiarities
		3.4.1 OMRP Systems
		3.4.2 Monomers and Initiators
		3.4.3 General Conditions
		3.4.4 Controlled Architectures
	3.5 ATRP – Examples and Peculiarities
		3.5.1 Basic ATRP Components
			3.5.1.1 Monomers
			3.5.1.2 Transition Metal Complexes as ATRP Catalysts
			3.5.1.3 Initiators
		3.5.2 Conditions
		3.5.3 Mechanistic Features
		3.5.4 Controlled Architectures
	3.6 Degenerative Transfer Processes and RAFT
		3.5.6.1 Monomers and Initiators
		3.5.6.2 Transfer Agents
		3.6.3 Controlled Architectures
	3.7 Relative Advantages and Limitations of SFRP, ATRP, and DT Processes
		3.7.1 Reactivity Orders in Various CRP Systems
		3.7.2 Interrelation and Overlap Between Various CRP Systems
	3.8 Controlled Polymer Architectures by CRP: Topology
		3.8.1 Linear Chains
		3.8.2 Star-Like Polymers
		3.8.3 Comb-Like Polymers
		3.8.4 Branched and Hyperbranched Polymers
		3.8.5 Dendritic Structures
		3.8.6 Polymer Networks and Microgels
		3.8.7 Cyclic Polymers
	3.9 Chain Composition
		3.9.1 Statistical Copolymers
		3.9.2 Segmented Copolymers (Block, Grafts and Multisegmented Copolymers)
			3.9.2.1 Block Copolymers by a Single CRP Method
			3.9.2.2 Block Copolymers by Combination of CRP Methods
			3.9.2.3 Block Copolymerization by Site Transformation and Dual Initiators
			3.9.2.4 Multisegmented Block Copolymers
			3.9.2.5 Stereoblock Copolymers
		3.9.3 Graft Copolymers
		3.9.4 Periodic Copolymers
		3.9.5 Gradient Copolymers
		3.9.6 Molecular Hybrids
		3.9.7 Templated Systems
	3.10 Functional Polymers
		3.10.1 Polymers with Side Functional Groups
		3.10.2 End Group Functionality: Initiators
		3.10.3 End Group Functionality through Conversion of Dormant Chain End
	3.11 Applications of Materials Prepared by CRP
		3.11.1 Polymers with Controlled Compositions
		3.11.2 Polymers with Controlled Topology
		3.11.3 Polymers with Controlled Functionality
		3.11.4 Hybrids
	3.12 Outlook
		3.12.1 Mechanisms
		3.12.2 Molecular Architecture
		3.12.3 Structure–Property Relationship
	Acknowledgments
	References
4 Living Transition Metal-Catalyzed Alkene Polymerization: Polyolefin Synthesis and New Polymer Architectures
	4.1 Introduction
	4.2 Living α-Olefin Polymerization
		4.2.1 Metallocene-Based Catalysts
		4.2.2 Catalysts Bearing Diamido Ligands
		4.2.3 Catalysts Bearing Diamido Ligands with Neutral Donors
		4.2.4 Amine-Phenolate and Amine-Diol Titanium and Zirconium Catalysts
		4.2.5 Monocyclopentadienylzirconium Amidinate Catalysts
		4.2.6 Pyridylamidohafnium Catalysts
		4.2.7 Titanium Catalysts for Styrene Homo- and Copolymerization
		4.2.8 Tripodal Trisoxazoline Scandium Catalysts
		4.2.9 Late Transition Metal Catalysts
	4.3 Living Propylene Polymerization
		4.3.1 Vanadium Acetylacetonoate Catalysts
		4.3.2 Metallocene-Based Catalysts
		4.3.3 Catalysts Bearing Diamido Ligands
		4.3.4 Bis(phenoxyimine)titanium Catalysts
		4.3.5 Bis(phenoxyketimine)titanium Catalysts
		4.3.6 Amine Bisphenolate Zirconium Catalysts
		4.3.7 Monocyclopentadienylzirconium Amidinate Catalysts
		4.3.8 Pyridylamidohafnium Catalysts
		4.3.9 Late Transition Metal Catalysts
	4.4 Living Polymerization of Ethylene
		4.4.1 Non-Group 4 Early Metal Polymerization Catalysts
		4.4.2 Bis(phenoxyimine)titanium Catalysts
		4.4.3 Bis(phenoxyketimine)titanium Catalysts
		4.4.4 Titanium Indolide–Imine Catalysts
		4.4.5 Bis(enaminoketonato)titanium Catalysts
		4.4.6 Aminopyridinatozirconium Catalysts
		4.4.7 Tris(pyrazolyl)borate Catalysts
		4.4.8 Late Transition Metal Catalysts
	4.5 Living Nonconjugated Diene Polymerization
		4.5.1 Vanadium Acetylacetonoate Catalysts
		4.5.2 Bis(phenoxyimine)titanium Catalysts
		4.5.3 Cyclopentadienyl Acetamidinate Zirconium Catalysts
		4.5.4 Late Transition Metal Catalysts
	4.6 Living Homo- and Copolymerizations of Cyclic Olefins
		4.6.1 Norbornene Homopolymerization
		4.6.2 Copolymers of Norbornene/Ethylene and Cyclopentene/Ethylene
			4.6.2.1 Non-Group 4 Early Transition Metal Catalysts
			4.6.2.2 Group 4 Metallocene-Based Catalysts
			4.6.2.3 Titanium Catalysts for Living Ethylene–Cyclic Olefin Copolymerization
			4.6.2.4 Palladium α-Diimine Catalysts
	4.7 Random Copolymers
		4.7.1 Random Copolymers Incorporating Polar Monomers
	4.8 Block Copolymers
		4.8.1 Block Copolymers Containing Poly(α-olefin) Blocks
		4.8.2 Block Copolymers Containing Polypropylene Blocks
			4.8.2.1 Isotactic Polypropylene-Containing Block Copolymers
			4.8.2.2 Syndiotactic Polypropylene-Containing Block Copolymers
			4.8.2.3 Atactic Polypropylene-Containing Block Copolymers
		4.8.3 Polyethylene-Containing Block Copolymers
		4.8.4 Norbornene- and Cyclopentene-Containing Block Copolymers
		4.8.5 Block Copolymers Containing Blocks Derived from 1,5-Hexadiene Polymerization
		4.8.6 Block Copolymers Containing Blocks Derived from Polar Monomers
	4.9 Outlook and Summary
	References
5 Living Ring-Opening Polymerization of Heterocyclic Monomers
	5.1 Introduction
	5.2 Anionic and Coordination Living Ring-Opening Polymerization (LROP)
		5.2.1 Initiation in the Anionic LROP
		5.2.2 Propagation in the Anionic LROP
			5.2.2.1 Polymerization of O- and S-Heterocyclic Monomers
			5.2.2.2 Polymerization of Si-, N-, and P-Heterocyclic Monomers
		5.2.3 Coordination Polymerization
		5.2.4 Organocatalytic ROP of Cyclic Esters
		5.2.5 Transfer Processes in the LROP
		5.2.6 Departures from the Livingness
	5.3 Cationic CROP and LROP
		5.3.1 Cationic ROP of Tetrahydrofuran (THF)
		5.3.2 Propagation in the Cationic ROP
		5.3.3 Macroion–Macroester Interconversions in the Cationic ROP
		5.3.4 Cationic ROP of Cyclic Imino Ethers (Oxazolines) and Cyclic Thioesters
		5.3.5 Cationic ROP of Cyclosiloxanes
		5.3.6 Activated Monomer Cationic ROP of Cyclic Monomers
	5.4 CROP and LROP Conducted in Dispersions
	5.5 Conclusion
	References
6 Living Ring-Opening Metathesis Polymerization
	6.1 Overview of Ring-Opening Metathesis Polymerization (ROMP)
		6.1.1 Introduction
		6.1.2 ROMP Essentials: Mechanism and Thermodynamics
		6.1.3 Living Ring-Opening Metathesis Polymerization
	6.2 Initiators for Living ROMP
		6.2.1 Historical Aspects
		6.2.2 Ill-Defined Initiators
		6.2.3 Titanium
		6.2.4 Tantalum
		6.2.5 Tungsten
		6.2.6 Molybdenum
		6.2.7 Ruthenium
	6.3 Applications of Polymers Synthesized Using ROMP: From Novel Materials to Commercial Products
		6.3.1 Selected Applications for Polymers Synthesized Using ROMP
		6.3.2 Commercial Polymers Synthesized Using ROMP
	6.4 Challenges and Perspectives for the Future
		6.4.1 Development of New Initiators
		6.4.2 Polymerization of ‘‘New’’ and ‘‘Old’’ Monomers
	6.5 Conclusion
	Acknowledgments
	References
7 Macromolecular Architectures by Living and Controlled/ Living Polymerizations
	7.1 Introduction
	7.2 Star Polymers
		7.2.1 Symmetric Stars
			7.2.1.1 Multifunctional Initiators (MFIs)
			7.2.1.2 Multifunctional Linking Agents (MFLAs)
			7.2.1.3 Difunctional Monomers (DFMs)
		7.2.2 Star-Block Copolymers
		7.2.3 Asymmetric Stars
			7.2.3.1 Molecular Weight Asymmetry
			7.2.3.2 Topological Asymmetry
		7.2.4 Miktoarm Star Polymers
	7.3 Comb Polymers
		7.3.1 ‘‘Grafting Onto’’ Methods
		7.3.2 ‘‘Grafting from’’ Methods
		7.3.3 ‘‘Grafting Through’’ or Macromonomer Method
	7.4 Cyclic Polymers
		7.4.1 Cyclic Polymers from Precursors with Homodifunctional Groups
		7.4.2 Cyclic Homopolymers
		7.4.3 Cyclic Block Copolymers
	7.5 Dendritic Polymers
		7.5.1 Dendrimers
		7.5.2 Dendritic Polymers
	7.6 Complex Macromolecular Architectures
		7.6.1 ω-Branched Polymers
		7.6.2 α,ω-Branched Polymers
		7.6.3 Hyperbranched and Dendrigraft Polymers
		7.6.4 Other Complex Architectures
	7.7 Applications
	7.8 Conclusions
	References
8 Synthesis of Block and Graft Copolymers
	8.1 Introduction
	8.2 Principles of Block Copolymerization
		8.2.1 AB by Anionic Polymerization
		8.2.2 AB by Cationic Polymerization
		8.2.3 AB by Controlled Radical Polymerization
			8.2.3.1 AB by ATRP
			8.2.3.2 AB by NMP
			8.2.3.3 AB by RAFT
		8.2.4 AB by Combination of Methods
			8.2.4.1 Site-Transformation Reactions
			8.2.4.2 By Using Dual Initiator
		8.2.5 AB by Coupling Reactions
	8.3 ABA Triblock Copolymers
		8.3.1 Synthetic Strategies
		8.3.2 ABA by Anionic Polymerization
		8.3.3 ABA by GTP
		8.3.4 ABA by Cationic Polymerization
		8.3.5 ABA by Controlled Radical Polymerization
		8.3.6 ABA by Combination of Methods
	8.4 (AB)n Linear Multiblock Copolymers
	8.5 ABC Triblock Terpolymers
		8.5.1 Synthetic Strategies
		8.5.2 ABC by Anionic Polymerization
		8.5.3 ABC by GTP
		8.5.4 ABC by Cationic Polymerization
		8.5.5 ABC by Controlled Radical Polymerization
		8.5.6 ABC by Combination of Methods
	8.6 Synthesis of ABCA Tetra- and ABCBA Pentablock Terpolymers
	8.7 Synthesis of ABCD Quaterpolymers
	8.8 Graft Copolymers
		8.8.1 Synthetic Strategies
		8.8.2 A-g-B Graft Copolymers
		8.8.3 Model Graft-Like Architectures
	8.9 Applications
	8.10 Concluding Remarks
	References
9 Morphologies in Block Copolymers
	9.1 Introduction
	9.2 Block Copolymers in Bulk State
		9.2.1 Theoretical Descriptions of Block Copolymer Morphologies in the Bulk State
		9.2.2 Experimental Results on the Morphological Properties of Block Copolymers in the Bulk State
	9.3 Block Copolymer Thin Films
		9.3.1 General Concepts of Block Copolymer Thin Films
		9.3.2 Controlled Self-Assembly in Block Copolymer Thin Films
			9.3.2.1 Interactions with Air and Substrate Interfaces
			9.3.2.2 Alignment by External Fields
			9.3.2.3 Crystallization
	9.4 Block Copolymer Micelles
		9.4.1 General Concepts of Block Copolymer Micelles
		9.4.2 Block Copolymer Micelles Containing Metal–Ligand Complexes
		9.4.3 Multicompartment Micelles Made from ABC Triblock Terpolymers
			9.4.3.1 Micelles with a Compartmentalized Core
			9.4.3.2 Micelles with a Compartmentalized Corona
	9.5 Applications
	9.6 Summary and Outlook
	References
10 Industrial Applications
	10.1 Introduction
	10.2 Synthesis of Anionic Styrenic Block Copolymers
	10.3 Adhesives and Sealants
	10.4 Compounding Applications
		10.4.1 Raw Material Selection
		10.4.2 Processing and Forming
		10.4.3 Automotive
		10.4.4 Wire and Cable
		10.4.5 Medical
		10.4.6 Soft-Touch Overmolding
		10.4.7 Ultrasoft Compounds
		10.4.8 Elastic Films and Fibers
	10.5 Polymer Modification
	10.6 Cross-Linked Systems
		10.6.1 SBC-Based Dynamic Vulcanizates
		10.6.2 Flexographic Printing Plates
	10.7 Bitumen Modification
		10.7.1 Paving
		10.7.2 Road Marking
		10.7.3 Roofing
	10.8 Footwear
	10.9 Viscosity Modification and Other Highly Diluted SBC Applications
		10.9.1 Viscosity Index Improvers
		10.9.2 Oil Gels
	10.10 Emerging Technology in Block Copolymers
		10.10.1 Recycling Compatibilization
		10.10.2 PVC and Silicone Replacement
		10.10.3 Sulfonated Block Copolymers
		10.10.4 Methacrylate and Acrylate Block Copolymers by Anionic Polymerization
		10.10.5 Styrene-Isobutylene-Styrene (SiBS) via Cationic Polymerization
		10.10.6 Commercial Uses of Other Controlled Polymerized Polymers
	References
Index
Back Page
                        
Document Text Contents
Page 2

Controlled and Living
Polymerizations

Methods and Materials

Edited by
Axel H.E. Müller
and Krzysztof Matyjaszewski


ayyappan
9783527629107.jpg

Page 319

294 5 Living Ring-Opening Polymerization of Heterocyclic Monomers

120. Stevels, W.M., Ankone, M.J.K.,
Dijkstra, P.J. and Feijen, J. (1996)
Macromolecules, 29, 6132.

121. Stevels, W.M., Ankone, M.J.K.,
Dijkstra, P.J. and Feijen, J. (1996)
Macromolecules, 29, 8296.

122. Save, M., Schappacher, M. and
Soum, A. (2002) Macromol. Chem.
Phys., 203, 889.

123. Save, M. and Soum, A. (2002)
Macromol. Chem. Phys., 203, 2591.

124. Kowalski, A., Duda, A. and
Penczek, S. (1998) Macromol. Rapid
Commun., 1, 567.

125. Kowalski, A., Duda, A. and
Penczek, S. (2000) Macromolecules,
33, 689.

126. Kowalski, A., Duda, A. and
Penczek, S. (2000) Macromolecules,
33, 7359.

127. Majerska, K., Duda, A. and
Penczek, S. (2000) Macromol. Rapid
Commun., 21, 1327.

128. Libiszowski, J., Kowalski, A.,
Biela, T., Cypryk, M., Duda, A. and
Penczek, S. (2005) Macromolecules,
38, 8170.

129. Kricheldorf, H.R.,
Kreiser-Saunders, I. and Stricker, A.
(2000) Macromolecules, 33, 702.

130. Ryner, M., Stritsberg, K.,
Albertsson, A.C., von Schenck, H.
and Svensson, M. (2001)
Macromolecules, 34, 3877.

131. Storey, R.F. and Sherman, J.W.
(2002) Macromolecules, 35, 1504.

132. Messman, J.M. and Storey, R.F.
(2004) J. Polym. Chem., Part A: Polym.
Chem., 42, 6238.

133. Pack, J.W., Kim, S.H., Park, S.Y.,
Lee, Y.W. and Kim, Y.H. (2003)
Macromolecules, 36, 8923.

134. Bratton, D., Brown, M. and
Howdle, S.M. (2005) Macromolecules,
38, 1190.

135. Xian, C.-S., Wang, Y.-C., Du, J.-Z.,
Chen, X.-S. and Wang, J. (2006)
Macromolecules, 9, 6825.

136. Myers, M., Connor, E.F., Glauser, T.,
Moeck, A., Nyce, G. and Hedrick, J.L.
(2002) J. Polym. Chem., Part A:
Polym.Chem., 40, 844.

137. Coulembier, O., Lohmeijer, B.G.G.,
Dove, A.P., Pratt, R.C.,

Mespouille, L., Culkin, D.A.,
Benight, S.J., Dubois, P.,
Waymouth, R.M. and Hedrick, J.L.
(2006) Macromolecules, 39, 5617.

138. Pratt, R.C., Lohmeijer, B.G.G.,
Long, D.A., Pontus Lundberg, P.N.,
Dove, A.P., Li, H., Wade, C.D.,
Waymouth, R.M. and Hedrick, J.L.
(2006) Macromolecules, 39, 7863.

139. Lohmeijer, B.G.G., Pratt, R.C.,
Leibfarth, F., Logan, J.W.,
Lond, D.A., Dove, A.P.,
Nederberg, F., Choi, J., Wade, C.,
Waymouth, R.M. and Hedrick, J.L.
(2006) Macromolecules, 39, 8574.

140. Biela, T., Penczek, S. and
Slomkowski, S. (1983) Makromol.
Chem., 184, 811.

141. Hofman, A., Slomkowski, S. and
Penczek, S. (1987) Makromol. Chem.,
Rapid Commun., 8, 387.

142. Ito, K., Hashizuka, Y. and
Yamashita, Y. (1977) Macromolecules,
10, 821.

143. Ito, K. and Yamashita, Y. (1978)
Macromolecules, 11, 68.

144. Muraki, T., Fujita, K., Oishi, A. and
Taguchi, Y. (2005) Polym. J., 37, 847.

145. Baran, J., Duda, A., Kowalski, A.,
Szymański, R. and Penczek, S. (1997)
Macromol. Rapid Commun., 18, 325.

146. Szymanski, R. (1998) Macromol.
Theory Simul., 7, 27.

147. Kasperczyk, J., Bero, M. and
Adamus, G. (1993) Makromol. Chem.,
194, 907.

148. Kowalski, A., Libiszowski, J.,
Majerska, K., Duda, A. and
Penczek, S. (2007) Polymer, 48, 3952.

149. Florczak, M. and Duda, A. (2008)
Angew. Chem., Int. Ed., 42, 9088.

150. Florczak, M., Libiszowski, J.,
Mosnacek, J., Duda, A. and
Penczek, S. (2007) Macromol. Rapid
Commun., 28, 1385.

151. Aida, T. (1994) Prog. Polym. Sci., 19,
469.

152. Aida, T. and Inoue, S. (1996) Acc.
Chem. Res., 29, 39.

153. Kricheldorf, H.R. (1989) J. Macromol.
Sci. Chem., A26, 951.

154. Weissermel, K., Fischer, E.,
Gutweiler, K., Hermann, H.D. and

Page 320

References 295

Cherdron, H. (1967) Angew. Chem.,
Int. Ed. Engl., 6, 526.

155. Penczek, S. (2000) J. Polym. Sci., Part
A: Polym. Chem., 38, 1919.

156. Matyjaszewski, K. and Penczek, S.
(1974) J. Polym. Sci., Polym. Chem.
Ed., 12, 1905.

157. Baran, T., Brzezińska, K.,
Matyjaszewski, K. and Penczek, S.
(1983) Makromol. Chem., 184, 2497.

158. Goethals, E.J. and Drijvers, W. (1973)
Makromol. Chem., 165, 329.

159. Goethals, E.J. and Schacht, E.H.
(1973) J. Polym. Sci., Polym. Lett. Ed.,
11, 497.

160. Saegusa, T., Kobayashi, S. and
Yamada, A. (1976) Makromol. Chem.,
177, 2271.

161. Libiszowski, J., Szymański, R. and
Penczek, S. (1989) Makromol. Chem.,
190, 1225.

162. Szymański, R. and Penczek, S. (1982)
Makromol. Chem., 183, 1587.

163. Matyjaszewski, K. (1984) Makromol.
Chem., 185, 51.

164. Brzezińska, K., Chwiałkowska, W.,
Kubisa, P., Matyjaszewski, K. and
Penczek, S. (1977) Makromol. Chem.,
178, 2491.

165. Matyjaszewski, K. and Penczek, S.
(1981) Makromol. Chem., 182, 1735.

166. Kobayashi, S., Danda, H. and
Saegusa, T. (1974) Macromolecules, 7,
415.

167. Matyjaszewski, K., Słomkowski, S.
and Penczek, S. (1979) J. Polym. Sci.,
Polym. Chem. Ed., 17, 69.

168. Brzezińska, K., Matyjaszewski, K.
and Penczek, S. (1978) Makromol.
Chem., 179, 2387.

169. Matyjaszewski, K. (1984) Makromol.
Chem., 185, 37.

170. Goethals, E.J., Drijwers, W., van
Ooteghem, I. and Buyle, A.M. (1973)
Macromol. Sci. Chem., A7, 1375.

171. Penczek, S. and Matyjaszewski, K.
(1976) J. Polym. Sci., Polym. Symp.,
56, 255.

172. Penczek, S., Szymański, R. and
Duda, A. (1995) Macromol. Symp., 98,
195.

173. (a) Matyjaszewski, K.(ed.). (1998)
ACS Symposium Series, vol. 685, p. 1

(b) Matyjaszewski, K.(ed.). (2003)
ACS Symposium Series, vol. 854, p. 1.

174. Dworak, A. (1998) Macromol. Chem.
Phys., 199, 1843.

175. Saegusa, T. and Kobayashi, S. (1976)
Cyclic imino ethers, polymerization,
in Encyclopedia of Polymer Science and
Technology, vol. 1, suppl. (eds H.
F. Mark and N. F. Bikales),
Wiley-Interscience, New York, p. 220.

176. Kobayashi, S. and Uyama, H. (2002)
J. Polym. Sci., Part A: Polym. Chem.,
40, 192.

177. Choi, W., Sanda, F. and Endo, T.
(1998) Macromolecules, 31, 9093.

178. Nagai, A., Ochiai, B. and Endo, T.
(2003) Chem. Commun., 3018.

179. Grzelka, A., Chojnowski, J.,
Fortuniak, W., Taylor, R.G. and
Hupfield, P.C. (2004) J. Inorg.
Organomet. Polym., 14, 101.

180. Wang, Q., Zhang, H.,
Prakash, G.K.S., Hogen-Esch, T.E.
and Olah, G.A. (1996)
Macromolecules, 29, 6691.

181. Toskas, G., Moreau, M., Masure, M.
and Sigwalt, P. (2001)
Macromolecules, 34, 4730.

182. Chojnowski, J., Cypryk, M. and
Kazmierski, K. (2002)
Macromolecules, 35, 9904.

183. Cypryk, M., Kurjata, J. and
Chojnowski, J. (2003) J. Organomet.
Chem., 686, 373.

184. McKenna, J.M., Wu, T.K. and
Pruckmayr, G. (1977)
Macromolecules, 10, 877.

185. Andrews, J.M. and Semlyen, J.A.
(1972) Polymer, 13, 141.

186. Worsfold, D.J. and Eastham, A.M.
(1957) J. Am. Chem. Soc., 79, 900.

187. Penczek, S., Kubisa, P.,
Matyjaszewski, K. and Szymanski, R.
(1984) Structures and reactivities in
the ring-opening and vinyl cationic
polymerization, in Cationic
Polymerizations and Related Processes
(ed. E. J. Goethals), Academic Press,
New York, p. 139.

188. Kubisa, P. and Penczek, S. (1999)
Prog. Polym. Sci., 24, 1409.

189. Biedroń, T., Szymański, R.,
Kubisa, P. and Penczek, S. (1990)

Page 637

612 Index

t
TEMPO-mediated radical polymerization,

360–361
Termination, 105
Tert-butyllithium (t-BuLi)-R3Al initiator

system, 358
Tetraalkylammonium counterions,

35–36
1,2,4,5-Tetra(bromomethyl)benzene, 352
Tetrabutylammonium salts, 35, 62
Thermoplastic elastomers (TPEs), 556
Thermoplastic vulcanizates (TPVs), 582
Three-arm poly(2-vinylpyridine) (P2VP)

stars, 351
Tin alkoxides, 431
Topological asymmetry, 362, 369–370
Transfer agents (TAs), 105–106
Trialkylaluminum–enolate complex, 39
Tri- and tetrafunctional silyl enol ethers,

352
1,3,5-tri(chloromethyl)benzene, 351

Triethylaluminum system, 39
Trimethylsilyl–nucleophile compound,

34
1,3,5-tris(bromomethyl)benzene, 353
Trommsdorff effect, 108
µ-type coordination, 38–39
σ, µ-type coordination, 40

u
Ultraviolet (UV) detector, 347
Umbrella polymers, 416

v
Vapor pressure osmometry, 351
Viscosity index improvers (VIIs), 561

Similer Documents