Download Brain Repair - M. Bahr (Springer, 2006) WW PDF

TitleBrain Repair - M. Bahr (Springer, 2006) WW
TagsMedical
LanguageEnglish
File Size18.4 MB
Total Pages264
Table of Contents
                            cover-image-large
Brain Repair
CONTENTS
	Cell Death in the Nervous System
	The Glial Response to Injury and Its Role in the Inhibition of CNS Repair
	DSD-1 -Proteoglycan/Phosphacan and Receptor Protein Tyrosine Phosphatase-Beta Isoforms during Development and Regeneration of Neural Tissues
	Regeneration Failure in the CNS:Cellular and Molecular Mechanisms
	The Role of lonotropic Purinergic Receptors(P2X) in Mediating Plasticity Responsesin the Central Nervous System
	Lesion-Induced Axonal Sproutingin die Central Nervous System
	A Kinase with a Vision
	Attempts to Restore Visual Function after Optic Nerve Damage in Adult Mammals
	Experimental Treatment Strategies, Neuroprotectiveand Repair Strategies in the Lesioned Adult CNS
	Neuroprotection by cAMP
	The G)llagenous Wound Healing Scarin the Injured Central Nervous System Inhibits Axonal Regeneration
	Role of Endogenous Neural Stem Cellsin Neurological Disease and Brain Repair
	Transplantation in Parkinsons Disease
Index
                        
Document Text Contents
Page 132

120 Brain Repair

86. Hyman BT, VanHoesen GW, Kromer LJ et al. Perforant pathway changes and the memory im-
pairment of alzheimer,s disease. Ann Neurol 1986; 20:472-481.

87. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol
1991; 82:239-259.

88. Calhoun ME, Burgermeister P, Phinney AL et al. Neuronal overexpression of mutant APP results
in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci U S A 1999;
96:14088-14093.

89. Stalder M, Phinney AL, Probst A et al. Association of microglia with amyloid plaques in brains of
APP23 transgenic mice. Am J Pathol 1999; 154:1673-1684.

90. Stalder M, Deller T, Staufenbiel M et al. 3D-reconstruction of microglia and amyloid in APP23
transgenic mice: no evidence of intracellular amyloid. Neurobiol Aging 2001; 22:427-434.

91. Sloviter RS. The functional organization of the hippocampal dentate gyrus and its relevance to the
pathogenesis of temporal lobe epilepsy. Ann Neurol 1994; 35:640-654.

92. Sloviter RS. A simplified Timm stain procedure compatible with formaldehyde fixation and rou-
tine paraffin embedding of rat brain. Brain Res Bull 1982; 8:771-774.

93. Sutula T, Cascino G, Cavazos J et al. Mossy fiber synaptic reorganization in the epileptic human
temporal lobe. Ann Neurol 1989; 26:321-330.

94. Babb TL, Pretorius JK, Mello LE et al. Synaptic reorganizations in epileptic human and rat kainate
hippocampus may contribute to feedback and feedforward excitation. Epilepsy Res Suppl 203;
9:193-202.

95. Babb TL, Kupfer WR, Pretorius JK et al. Synaptic reorganization by mossy fibers in human epi-
leptic fascia dentata. Neuroscience 1991; 42:351-363.

96. de Lanerolle NC, Kim JH, Robbins RJ et al. Hippocampal interneuron loss and plasticity in hu-
man temporal lobe epilepsy. Brain Res 1989; 495:387-395.

97. Mathern GW, Babb TL, Pretorius JK et al. Reactive synaptogenesis and neuron densities for neu-
ropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic hu-
man fascia dentata. J Neurosci 1995; 15:3990-4004.

98. Lehmann TN, Gabriel S, Kovacs R et al. Alterations of neuronal connectivity in area CAl of
hippocampal slices from temporal lobe epilepsy patients and from pilocarpine-treated epileptic rats.
Epilepsia 2000; 41:190-194.

99. Isokawa M, Levesque MF, Babb TL et al. Single mossy fiber axonal systems of human dentate
granule cells studied in hippocampal slices from patients with temporal lobe epilepsy. J Neurosci
1993; 13:1511-1522.

100. Franck JE, Pokorny J, Kunkel DD et al. Physiologic and morphologic characteristics of granule
cell circuitry in human epileptic hippocampus. Epilepsia 1995; 36:543-558.

101. van Haeften T, Wouterlood FG. Neuroanatomies tracing at high resolution. J Neurosci Meth
2000; 103:107-116.

102. Boulton CL, Haebler DV, Heinemann U. Tracing of axonal connections by rhodamine-dextran
amine in the rat hippocampal-entorhinal cortex slice preparation. Hippocampus 1992; 2:99-106.

103. Freiman TM, Gimbel K, Honegger J et al. Anterograde tracing of human hippocampus in vitro -
a neuroanatomical tract tracing technique for the analysis of local fiber tracts in human brain. J
Neurosci Meth 2002; 120:95-103.

104. Gall CM, Isackson PJ. Limbic seizures increase neuronal production of messenger RNA for nerve
growth factor. Science 1989; 245:758-761.

105. Niquet J, Jorquera J, Ben-Ari Y et al. N-CAM immunoreactivity on mossy fibers and reactive
astrocytes in the hippocampus of epileptic rats. Brain Res 1993; 626:106-116.

106. Niquet J, Jorquera J, Faissner A et al. Gliosis and axonal sprouting in the hippocampus of epileptic
rats are associated with an increase of tenascin-C immunoreactivity. J Neurocytol 1995; 24:611-624.

107. Nakic M, Mitrovic N, Sperk G et al. Kainic acid activates transient expression of tenascin-C in the
adult rat hippocampus. J Neurosci Res 1996; 44:355-362.

108. Mathern GW, Babb TL, Micevych PE et al. Granule cell mRNA levels for BDNF, NGF, and
NT-3 correlate with neuron losses or supragranular mossy fiber sprouting in the chronically dam-
aged and epileptic human hippocampus. Mol Chem Neuropathol 1997; 30:53-76.

109. Scheffler B, Faissner A, Beck H et al. Hippocampal loss of tenascin boundaries in ammon's horn
sclerosis. Glia 1997; 19:35-46.

Page 133

Lesion-Induced Axonal Sprouting in the Central Nervous System 121

110. Bender R, Heimrich B, Meyer M et al. Hippocampal mossy fiber sprouting is not impaired in

brain-derived neurotrophic factor-deficient mice. Exp Brain Res 1998; 120:399-402.

111. Schneider GE. Is it really better to have your brain lesion early? A revision of the "kennard prin-

ciple." Neuropyschol 1979; 17:557-583.

112. Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord.

Physiol Rev 1996; 76:319-370.

113. Ramirez JJ. The functional significance of lesion-induced plasticity of the hippocampal formation.

Brain Plas Adv Neurology 1997; 73:61-82.

114. Ramirez JJ. The role of axonal sprouting in functional reorganization after CNS injury: Lessons

from the hippocampal formation. Restor Neurol Neurosci 2001; 19:237-262.

115. Cao Y, Vikingstad EM, Huttenlocher PR et al. Functional magnetic resonance studies of the reor-

ganization of the human hand sensorimotor area after unilateral brain injury in the perinatal pe-

riod. Proc Natl Acad Sci USA 1994; 91:9612-9616.

116. Carr LJ, Harrison LM, Evans AL et al. Patterns of central motor reorganization in hemiplegic

cerebral palsy. Brain 1993; 116:1223-1247.

117. Woolf CJ, Shortland P, Coggeshall RE. Peripheral nerve injury triggers central sprouting of myeli-

nated afferents. Nature 1992; 355:75-78.

Page 263

Index 251

L-dopa 222, 227, 228, 230
LI 15,17, 18,34,37,38,61,106
Lamellipodia 64
Lamlnin 12, 14, 17, 27, 32-34, 36, 37, 41-43,

61, 183, 185
Lens injury 136
Lewybody 221
LINGO-1 63,64
Lithium 205
Long term depression (LTD) 79, 128
Long term potentiation (LTP) 79, 128, 129

M

l-methyl-4-phenyl-pyridinium ion (MPP+)
167

MEK 126, 127, 129, 130
Microglia 11-13, 57, 58, 62, 82, 94, 113,

134, 231
Migration 25-27, 29, 36-38, 40, 42, 65, 150,

195,196,199,200
Monoamine-oxidase-B (MAO-B) 222
Monocular deprivation 123, 124, 129, 130
Mossy fiber 113-115,192,201,202
Multiple sclerosis (MS) 83, 193, 199, 200
Myelin-associated glycoprotein (MAG) 13,

19,41,59,63-66

N

N-CAM 15, 26, 32, 34, 37, 42, 61, 104, 106
NADPH 87
Nerve growth factor (NGF) 4, 5, 20, 36, 37,

83, 105, 115, 123, 124, 134, 140, 152,
155,167, 168, 170,171

Neural crest 2, 5, 41, 42, 82
Neural stem cell (NSC) 191-199, 202-204,

206, 236, 237
Neurite outgrowdi 26, 27, 31, 33-39, 59, 61,

63-66, 177, 223
Neurocan 15, 17, 18, 26, 27, 34, 40, 58, 61,

62, 105-108
Neurogenesis 1, 2, 81, 150, 172, 191-196,

201-205, 236, 237
Neuronal apoptosis inhibiting protein (NAIP)

3,154
Neuroprotection 92, 94, l4l , 167-171
Neurotrophic factor 55, 65, 66, 83, 84, 101,

105, 115,133,134,136,140,142, 152,
155, 164, 168, 172, 194, 196, 203, 204,
232

Neurotrophin 4, 5, 20, 21, 56, 63, 64, 84,
123-126, 128, 129, 133, 155, 156, 167,
168,204,205

Neurturin 134
NG2 11, 14, 16, 17, 20, 26, 27, 41, 42, 57,

62
NgCAM 35, 38
NgR 61, 63, 64, 66
NMDA receptor 79, 126-129, 156, 203
nNOS 89
NogoA 13, 19,20,60,61,64
Nuclear receptor related-1 (Nurrl) 235

o
Olfactory bulb ensheathing cells 65
Oligodendrocyte precursor 11-13, 16, 29, 31,

40-43, 57, 61, 62, 195, 199-201, 204
Oligodendrocyte-myelin glycoprotein (OMgp)

59, 61, 63
Ontogenetic cell death 149
Optic nerve transection 148-151, 153, 154
Oxygen-glucose deprivation 92

P2 receptor 77. 7S, 82, 84, 85, 90-94
p75 4, 5, 58,155
Parkinsons disease 5, 83, 157, 195, 196, 221,

224, 230
Perineuronal nets 15, 29, 32, 62
Peripheral nerve graft 56, 57, 66
Permeability transition pore (PTP) 25, 153
Permissive environment 34, 57, 200
Phosphacan 16, 25-36, 38- 43
Phosphodiesterase 65, 165-169
Photothrombotic stroke 203
Posdesional plasticity 83
Potassium deprivation 90
Primitive neuroectodermal tumor (PNETS)

197
Prion protein (PrP) 169, 171
Programmed cell deadi (PCD) 1-4, 150, 151,

153,155,156,164-167
Protein kinase A (PKA) 65,142,165-171
Protein transduction domain 158,159
Proteoglycan 11, 13, 15-17, 25-29, 31, 34,

40, 41, 57-59, 61, 62, 106-108,134,
177, 181, 188

Purinergic receptor 77, 81-85, 88, 89, 94
Purkinje cell 30, 31, 55, 56, 61, 81, 193

Page 264

252 Brain Repair

R

Rac 64
Reactive astrocyte 12, 25, 27, 42, 57, 58, 61,

85, 107-109
Receptor protein tyrosine phosphatase (RPTP)

25, 28-33, 38-40, 42, 43
Regeneration 11-20, 25, 27, 29, 41, 54-67,

11, 84, 85, 88, 94, 107, 112, 133, 134,
136-139, 142, 177-180, 187, 188,
193-195,202,206

RemyeUnation 42, 58, 199-201
Reticulon family 13
Retinal ganglion cell 33, 35, 55, 133, 148,

167-169
Retinotopic 134, 137, 142
RhoGTPase 64
Rho kinase (ROCK) 64,65
RNA interference (RNAi) 159, 160

Temporal lobe epilepsy 101, 113, 201, 202
Tenascin-C 26, 27, 37, 42, 56, 57, 62, 104,

106-108,115
Tetrodotoxin 167
TH 229-231,235-237
TNF-receptor 152
Transforming growth factor a (TGFa) 15,

58, 196, 235
Transforming growth factor p (TGF-p) 5, 12,

15,16,31,40-42,58,185,186
Transgenic mouse 107, 109- 111
Transplantation 133, 134, 136, 138, 142,

157, 193-196, 198, 199, 203, 204,
222-224, 226-233, 235-237

Traumatic brain injury 194
TROY/TAJ 63,64
TTX 167, 169
Tyrosine kinase (Trk) receptor 124-126

Seizure 40, 84, 113, 115, 201-203
Semaphorin 3A 20
Serum/potassium deprivation 90
Short interfering RNA (siRNA) 160
Short-term synaptic plasticity 79
Striatum 14, 82, 92, 191, 195, 196, 222, 223,

226, 228, 230-233, 235, 236
Substantia nigra 157, 195, 221, 223, 236
Subthalamic nucleus (STN) 222
Subventricularzone (SVZ) 42, 191, 192, 194,

200, 203, 204, 236, 237
Superior coUiculus (SC) 134, 137, 148-150,

155
Survival 1, 2, 4, 41, 54, G\, 82, 84-86, 124,

133, 134, 136-143, 149-151, 153-158,
165, 168-172, 196-199, 203-205,
222-228, 230-234, 236, 237

Synaptic plasticity 29, 79, 81, 122, 128, 129
Synaptogenesis 2, 25, 29, 102

Vasoactive intestinal peptide (VIP) 167, 168
Ventral intermediate nucleus (VIM) 222
Ventral mesencephalon (VM) 223-225, 227,

230
Versican 13, 15-17, 20, 27, 40, 41, 61, 62, 64
Visual function 133, 134, 137, 140, 142
Visual system 122, 123, 125, 134, 137, 148

w
Wallerian degeneration 55, 57, 177

X

X-chromosome linked lAP (XIAP) 3, 5, 154,
158

Xenograft 222, 224, 225, 234

Similer Documents