Download Biosensing Using Nanomaterials - A. Merkoci (Wiley, 2009) WW PDF

TitleBiosensing Using Nanomaterials - A. Merkoci (Wiley, 2009) WW
TagsMedical
LanguageEnglish
File Size62.0 MB
Total Pages505
Table of Contents
                            Cover Page
Title Page
Part I CARBON NANOTUBES
Chapter 2
Chapter 3
Part II NANOPARTICLES
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Part III NANOSTRUCTURED SURFACES
Chapter 14
Part IV NANOPORES
Index
                        
Document Text Contents
Page 252

21. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging

with semiconductor quantum dots. Nat. Biotechnol. 2004;22:969–976.

22. Hohng S, Ha T. Single-molecule quantum-dot fluorescence resonance energy transfer.

ChemPhysChem. 2005;6:956–960.

23. Warburton RJ. Self-assembled semiconductor quantum dots. Contemp. Phys. 2002;43:

351–364.

24. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, et al. J. Phys. Chem. B. 1997;101:

9463–9475.

25. Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing

ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996;100:468–471.

26. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly mono-

disperse CdE (E¼S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc.
1993;115:8706–8715.

27. Yu K, Singh S, Patrito N, Chu V. Effect of reaction media on the growth and photo-

luminescence of colloidal CdSe nanocrystals. Langmuir. 2004;20:11161–11168.

28. Yu K, Zaman B, Singh S, Wang D, Ripmeester JA. The effect of dispersion media on

photoluminescence of colloidal CdSe nanocrystals synthesized from TOP.Chem. Mater.

2005;17:2552–2561.

29. Yu K, Zaman B, Romanova S, Wang D, Ripmeester JA. Sequential synthesis of type II

colloidal CdTe/CdSe core-shell nanocrystals. Small. 2005;1:332–338.

30. Xu Y, Cai H, He PG, Fang YZ. Probing DNA hybridization by impedance measurement

based on CdS–oligonucleotide nanoconjugates. Electroanalysis. 2004;16:150–155.

31. Zhu N, Zhang A, Wang A, He P, Fang Y. Lead sulfide nanoparticle as oligonucleotides

labels for electrochemical stripping detection of DNA hybridization. Electroanalysis.

2005;15:577–582.

32. Liu M, Shi G, Zhang L, Cheng Y, Jin L. Quantum dots modified electrode and its

application in electroanalysis of hemoglobin. Electrochem. Commun. 2006;8:305–310.

33. Kuma A, Mandale AB, Sastry M. Phase transfer of aqueous CdS nanoparticles by

coordination with octadecanethiol molecules present in nonpolar organic solvents.

Langmuir. 2000;16:9299–9302.

34. Wang J, Liu G, Rivas G. Encoded beads for electrochemical identification. Anal. Chem.

2003;75:4667–4671.

35. Wang J, Liu G, Polsky R, Merkoci A. Electochemical stripping detection of DNA

hybridization based on cadmium sulfide nanoparticle tags. Electrochem. Commun.

2002;4:722–726.

36. Kortan AR, Hull R, Opila RL, et al. J. Am. Chem. Soc. 1990;112:1327–1332.

37. Steigerwald ML, Alivisatos AP, Gibson JM, et al. Surface derivatization and isolation

of semiconductor cluster molecules. J. Am. Chem. Soc. 1988;110:3046–3050.

38. Granot E, Patolsky F, Willner I. Electrochemical assembly of a CdS semiconductor

nanoparticle monolayer on surfaces: structural properties and photoelectrochemical

applications. J. Phys. Chem. B. 2004;108:5875–5881.

39. Willner I, Patolsky F, Wasserman J. Photoelectrochemistry with controlled DNA–cross-

linked CdS nanoparticle arrays. Angew. Chem. Int. Ed. 2001;40:1861–1864.

40. Yoffe AD. Semiconductor quantum dots and related systems: electronic, optical, lumi-

nescence and related properties of low dimensional systems. Adv. Phys. 2001;50:1–208.

240 QUANTUM DOTS FOR THE DEVELOPMENT OF OPTICAL BIOSENSORS

Page 253

41. Wang Y, Herron N. Nanometer-sized semiconductor clusters: materials synthesis,

quantum size effects, and photophysical properties. J. Phys. Chem. 1991;95:525–532.

42. Mizel A, Cohen ML. Electronic energy levels in semiconductor nanocrystals: a Wannier

function approach. Phys. Rev. B. 1997;56:6736–6741.

43. Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science.

1996;271:933–937.

44. Alivisatos AP. Perspectives on the physical chemistry of semiconductor nanocrystals.

J. Phys. Chem. 1996;100:13226–13239.

45. Murphy CJ, Coffer JL. Quantum dots: a primer. Appl. Spectrosc. 2002;56:16A–27A.

46. Brus LE. Electron–electron and electron–hole interactions in small semiconductor

crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys.

1984;80:4403–4409.

47. Sapra S, Shanthi N, Sarma DD. Realistic tight-binding model for the electronic structure

of II–VI semiconductors. Phys. Rev. B. 2002;66:205202.

48. Sapra S, SarmaDD.Evolution of the electronic structurewith size in II–VI semiconductor

nanocrystals. Phys. Rev. B. 2004;69:205304.

49. Kloepfer JA, Bradforth SE, Nadeau JL. Photophysical properties of biologically com-

patible CdSe quantum dot structures. J. Phys. Chem. B. 2005;109:9996–10003.

50. Algar WR, Krull UJ. Luminescence and stability of aqueous thioalkyl acid capped

CdSe/ZnS quantum dots correlated with ligand ionization. ChemPhysChem. 2007;8:

561–568.

51. Uyeda HT, Medintz IL, Jaiswal JK, Simon SM, Mattoussi H. Synthesis of compact

multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am.

Chem. Soc. 2005;127:3870–3878.

52. Jiang W, Mardyani S, Fischer H, Chan WCW. Design and characterization of lysine

cross-linked mercapto-acid biocompatible quantum dots. Chem. Mater. 2006;18:

872–878.

53. Aldana J, Lavelle N, Wang Y, Peng X. Size-dependent dissociation pH of thiolate

ligands from cadmium chalcogenide nanocrystals. J. Am. Chem. Soc. 2005;127:

2496–2504.

54. Aldana J, Wang YA, Peng X. Photochemical instability of CdSe nanocrystals coated by

hydrophilic thiols. J. Am. Chem. Soc. 2001;123:8844–8850.

55. Kim S, Bawendi MG. Oligomeric ligands for luminescent and stable nanocrystal

quantum dots. J. Am. Chem. Soc. 2003;125:14652–14653.

56. Pons T, Uyeda HT,Medintz IL,Mattoussi H. Hydrodynamic dimensions, electrophoretic

mobility, and stability of hydrophilic quantum dots. J. Phys. Chem. B. 2006;110:

20308–20316.

57. Leatherdale CA, Bawendi MG. Observation of solvatochromism in CdSe colloidal

quantum dots. Phys. Rev. B. 2001;63:165315.

58. AlgarWR,ZhouY, Zeng J, Krull UJ. Towards quantumdot and FRET-based optical DNA

biosensor technology: surface chemistry and photoluminescence of CdSe/ZnS and

Si quantum dots. Proc. SPIE. 2007;67960Q:1–12.

59. Gill R, Willner I, Shweky I, Banin U. Fluorescence resonance energy transfer in

CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage. J. Phys. Chem. B.

2005;109:23715–23719.

REFERENCES 241

Page 504

Poly (sodium 4-styrenesulfonate), 300

Polystyrene microgels, 298

Polystyrene microparticles, 224

Polystyrene microspheres, 297

Poly(styrene sulfonate), 300

Poly(vinylpyrrolidone) (PVP), 297

Potassium persulfate, 305

Potentiometric, 186

potentiometric stripping analysis (PSA), 182

Potentiometry, 187

Prostate-specific antigen, 227

Prostate-specific membrane

antigen (PSMA), 312

Protein(s), 157

analyses, 178

conformational changes in, 158

detection, 364

fluorescent, 342

green fluorescent (GFP), 342

GFP-expressing epithelial cells, 318

p-glycoprotein transmembrane

transporter (p-gp), 315

maltose-binding, 217, 314

metallothionein, 21

profiling, 434

protein A, 229

transmembrane tyrosine kinase receptor, 310

Pyrolysis, 206

Qbeads, 324

Quadrupole mass analyzer, 358

Quantification, 324

Quantum confinement, 201

effect, 334

Quantumdot(s) (QD(s)), 13, 100, 200, 291. See also

CdTe QDs; FRET, FRET-based

QD-containing systems; Nanoparticle(s),

QDs and Fe3O4; Polymer(s), beads that

contain a plurality of QDs

discrete QD(s)

coated in amphiphilic polymers, 310

discrete QDs in micelles, 309

discrete QD-polymer composites, 308

magnetic QD-composite, 316

magnetic QD-containing beads, 316

QD compound micelles (QDCMs), 296

QD-encoded polymer beads, 320

QD/Fe3O4-containing silica particles, 316

QD-polyisoprene nanocomposites, 305

QD-polymer composites, 293

QD-polymer composites that contain a plurality

of QDs, 308

QD-polystyrene particles, 297

QD-silica conjugates, 306

quantum dot-composite, 293

Quantum size effect, 335

Quantum yield, 205, 317

Quenching, 228, 296. See also Fluorescence,

quenching

self-quenching, 297

Radical initiators, 300

Radio frequency, 356

Raisin-bun, 306

Resonance light scattering (RLS), 311

RNA, 181

cRNA, 324

probe-cRNA hybridization, 324

miRNA, 226

Salmonella typhimurium, 226

Sandwich assays, 226

Scanning electrochemical microscopy, 120

Scanning near-field optical microscopy

(SNOM), 318

Scattering, 147

Screen-printing, 399

screen-printed electrode, 398

screen-printed substrate, 398

Self-assembly, 381

Semiconductivity, 108

Semiconductor, 209. See also Nanoparticles,

semiconductor

material, 334

Sensing, 248, 250, 262, 341.

See also Electrochemical,

sensing; pH, sensing

Sensitivity ratio, 400

Sensors, 13. See also Immunosensors;

Nanosensor; pH, sensor

electrochemical, 19

enzymatic, 112

glucose, 18, 28

particulate, 319

Sentinel lymph node (SLN) mapping, 313

Silane co-monomers, 305

Silanes, functionalized, 306

Silanization, 255, 256

Silica, see also Quantum dot(s) (QD(s)),

QD/Fe3O4-containing silica particles;

Quantum dot(s) (QD(s)),

QD-silica conjugates

coatings, 212

encapsulation, 305

shell, 224, 298

spheres, 306

498 INDEX

Page 505

Silver nanoparticles, 120, 153, 157, 158, 161,

165–167, 389, 394, 395

Simultaneous measurement, 105

Single-molecule spectroscopy, 230

Single nucleotide polymorphisms, 225

Single-walled carbon nanotubes, 4, 102. See also

Carbon nanotube(s); CNT(s);

Multiwalled carbon nanotubes

single CNT, 121

SWCNT(s), 4, 9, 11, 15, 20, 27, 29

SWNT field effect transistors, 109

SWNT forests, 109

Size exclusion chromatography (SEC), 308

SLN branches, 313

Sodium poly(styrene sulfonate), 297

Solid-state detection, 184

Solvent accessibility, 47

Solvent evaporation technique, 305

Spatially heterogeneous, 8. See also Electrode(s),

spatially heterogeneous

Spinal muscular atrophy, 235

Square wave voltammetry (SWV), 184

Step defects, 8. See also Edge-plane, step defects

St€ober method, 221

St€ober process, 305
Streptavidin, 227, 311

Stripping analysis, 180. See also Potentiometric,

potentiometric stripping analysis (PSA)

Succinimide coupling, 294

Sulfamethazine, 226

Surface, see also Carboxyl groups, surface

degradation, 296

modification, 212, 254, 256

plasmon band, 138

plasmons, 249

surface-enhanced affinity-capture (SEAC), 425

surface-enhanced laser desorption/ionization

(SELDI), 425

surface-enhanced neat desorption (SEND), 425

surface plasmon resonance, 139, 248

Suspension, 301

Systemic sclerosis, 319

Tetanus, 323

Tetraethylorthosilicate (TEOS), 305

Thioalkyl acids, 212

Thioglycolic acid, 299

Thiol, 294

ligands, 212

Thrombin, 237

thrombin-binding aptamer, 228

Titania-coated, 307

Total overlap diffusion, 397

Toxicity, 256, 261, 262, 318, 336.

See also Cytotoxicity

Tracking, 341

Transduction element, 200

Transforming growth factor-b1, 325
Transmission electron microscopy (TEM),

180, 295

Trialkoxysilane, 306

(Trihydroxysilyl) propylmethylphosphonate), 306

Trioctylphosphine oxide (TOPO), 292

Tuftsin, 311

Tumor

marker, 109

vasculature, 317

xenografts, 312

Tyrosinase, 30

Ultramictronomic, 302

Ultrasonication, 301

Ultrasonic irradiation, 305

Uric acid, 7

UV-vis, 140

Voltammetric, 178

voltammetric techniques, 183

Voltammetry, see also Anodic stripping

voltammetry; Cyclic voltammetry;

Differential pulse anodic stripping

voltammetry (DPASV); Differential

pulse voltammetry (DPV); Square wave

voltammetry (SWV)

Wide-type p53, 115

Working electrode, 180

Xenopus cells, 312

Zeta potential, 308

Zinc sulfide, 292

INDEX 499

Similer Documents