Download Bacteriocins - Ecology and Evolution - M. Riley, M. Chavan (Springer, 2007) WW PDF

TitleBacteriocins - Ecology and Evolution - M. Riley, M. Chavan (Springer, 2007) WW
TagsMedical
LanguageEnglish
File Size5.2 MB
Total Pages154
Document Text Contents
Page 1

Bacteriocins: Ecology and Evolution

Page 2

M.A. Riley M.A. Chavan (Eds.)

Bacteriocins
Ecology and Evolution

With 15 Figures, 4 in Color, and 11 Tables

Page 77

The Diversity of Bacteriocins in Gram-Positive Bacteria 71
T

yp
e

II
c:

m
is

ce
ll

an
eo

u
s

b
ac

te
ri

o
ci

n
s

A
u

re
o

ci
n

A
53

St
a

ph
yl

oc
oc

cu
s

a
u

re
u

s
A

s
in

gl
e-

p
ep

ti
d

e
b

ac
te

ri
o

ci
n

t
h

at
, s

im
il

ar
ly

t
o

a
u

re
o

ci
n


N

et
z

et
al

. (
20

02
)

A
70

, i
s

ex
p

o
rt

ed
d

es
p

it
e

n
o

t
p

o
ss

es
si

n
g

an
i

d
en

ti
fi

ab
le


si

gn
al

p
ep

ti
d

e

Sa
k

ac
in

Q
L

a
ct

ob
a

ci
ll

u
s

sa
ke

i
A

n
o

ve
l

b
ac

te
ri

o
ci

n
i

n
w

h
ic

h
t

h
e

p
re

cu
rs

o
r

p
ep

ti
d

e
an

d
i

ts


M
at

h
ie

se
n

e
t

al
. (

20
05

)
im

m
u

n
it

y-
re

la
te

d
p

ro
te

in
a

re
t

ra
n

sl
at

io
n

al
ly

c
o

u
p

le
d

M
u

ta
ci

n
s

IV
a

n
d

V
St

re
pt

oc
oc

cu
s

m
u

ta
n

s
Id

en
ti

fi
ed

b
y

a
co

m
b

in
at

io
n

o
f

p
ro

te
in

p
u

ri
fi

ca
ti

o
n

,
Q

i
et

al
. (

20
01

),
H

al
e

et
al

.
b

io
in

fo
rm

at
ic

a
n

al
ys

es
a

n
d

g
en

et
ic

d
is

se
ct

io
n

m
et

h
o

d
s;


(2

00
5a

, 2
00

5b
)

st
ru

ct
u

ra
l

ge
n

es
a

re
l

o
ca

te
d

i
n

d
if

fe
re

n
t

se
gm

en
ts

o
f

th
e

ge
n

o
m

e
b

u
t

b
o

th
b

ac
te

ri
o

ci
n

s
ar

e
ex

p
o

rt
ed

b
y

a
si

n
gl

e
A

B
C

t
ra

n
sp

o
rt

s
ys

te
m

Sa
k

ac
in

s
T

a
n

d
X

L
b.

s
a

ke
i

T
w

o
b

ac
te

ri
o

ci
n

s
ys

te
m

s
en

co
d

ed
b

y
d

iv
er

ge
n

t
ge

n
et

ic


V
au

gh
an

e
t

al
. (

20
03

)
lo

ci
t

h
at

a
re

a
ct

iv
at

ed
b

y
a

si
n

gl
e

th
re

e-
co

m
p

o
n

en
t

re
gu

la
to

ry
s

ys
te

m
; t

h
e

co
m

p
o

n
en

t
p

ep
ti

d
es

o
f

b
o

th


b
ac

te
ri

o
ci

n
s

ar
e

ex
p

o
rt

ed
b

y
th

e
sa

m
e

A
B

C
t

ra
n

sp
o

rt
er


w

it
h

o
u

t
th

e
n

ee
d

f
o

r
an

a
cc

es
so

ry
f

ac
to

r

B
ac

te
ri

o
ci

n
s

p
ro

d
u

ce
d

b
y

p
ro

p
io

n
ic

a
ci

d
b

ac
te

ri
a

(P
A

B
)

P
ro

p
io

n
ic

in
P

L
G

-1
P

ro
pi

on
ib

a
ct

er
iu

m


F
ir

st
b

ac
te

ri
o

ci
n

f
ro

m
P

A
B

t
o

b
e

ch
ar

ac
te

ri
ze

d
L

yo
n

a
n

d
G

la
tz

(
19

93
)

th
oe

n
ii

b
io

ch
em

ic
al

ly
(

b
u

t
n

o
t

ge
n

et
ic

al
ly

),
w

it
h

a
n

e
st

im
at

ed


m
o

le
cu

la
r

m
as

s
o

f
ca

. 1
0

k
D

a

P
ro

p
io

n
ic

in
T

1
P

. t
h

oe
n

ii
Se

c-
d

ep
en

d
en

t
b

ac
te

ri
o

ci
n

a
ct

iv
e

ag
ai

n
st

F
ay

e
et

al
. (

20
00

),
v

an
d

er
M

er
w

e
et

al
.

(t
h

o
en

ii
ci

n
4

47
)

P
ro

pi
on

ib
a

ct
er

iu
m

a
cn

es
(c

au
sa

ti
ve

a
ge

n
t

o
f

ac
n

e
(2

00
4)

vu
lg

ar
is

)

P
ro

te
as

e-
ac

ti
va

te
d


P

ro
pi

on
ib

a
ct

er
iu

m
A

n
o

ve
l

b
ac

te
ri

o
ci

n
t

h
at

i
s

ex
p

o
rt

ed
(

as
a

1
98

-a
a

p
re

cu
rs

o
r

F
ay

e
et

al
. (

20
02

),
B

en
-S

h
u

sh
an

e
t

al
.

an
ti

m
ic

ro
b

ia
l

p
ro

te
in


je

n
se

n
ii

an
d

p
ro

te
in

)
vi

a
th

e
Se

c-
d

ep
en

d
en

t
p

at
h

w
ay

, b
u

t
is

o
n

ly
(2

00
3)

(P
A

M
P

)/
p

ro
p

io
n

ic
in


P

. t
h

oe
n

ii
ac

ti
va

te
d

w
h

en
a

n
a

d
d

it
io

n
al

1
34

a
a

is
c

le
av

ed
o

ff
b

y
G

B
Z

-1
ex

tr
ac

el
lu

la
r

p
ro

te
as

es

P
ro

p
io

n
ic

in
F

P
ro

pi
on

ib
a

ct
er

iu
m


A

n
o

ve
l

b
ac

te
ri

o
ci

n
, i

n
t

h
at

t
h

e
b

io
lo

gi
ca

ll
y

ac
ti

ve
p

ep
ti

d
e

B
re

d
e

et
al

. (
20

04
)

fr
eu

d
en

re
ic

h
ii

is
t

h
e

ce
n

tr
al

p
o

rt
io

n
o

f
a

m
u

ch
l

ar
ge

r
p

re
p

ro
te

in
t

h
at


is

d
o

u
b

ly
p

ro
ce

ss
ed

Page 78

P. thoeniii have also been shown to produce propionicin T1 (thoeniicin 447),
a Sec-exported non-lantibiotic peptide that is active against the acne-causing
bacterium Propionibacterium acnes (Faye et al. 2000; van der Merwe et al.
2004).

One of the more unique bacteriocins encountered to date, and the most
extensively studied of the propionicins, is propionicin F produced by
Propionibacterium freudenreichii (Brede et al. 2004). Propionicin F consti-
tutes the central 43-aa peptide portion, namely, residues Trp102 to Pro145, of a
much larger 255-aa precursor protein, PcfA (Brede et al. 2004). As the propi-
onicin F genetic locus has been completely sequenced, the proteolytic pro-
cessing steps (between Cys101 and Trp102, and between Pro145 and Gly146) are
considered to be mediated by the gene products of pcfB and pcfC, respectively
(Brede et al. 2004). Since PcfA does not contain an identifiable N-terminal
signal peptide, the mechanism of export of propionicin F remains unknown,
although PcfD, a putative ABC transporter (which lacks the peptidase
domain), has been implicated here (Brede et al. 2004). However, while not
explicitly stated by Brede et al. (2004), we have noticed that the amino acid
sequence of mature propionicin F does contain a GG motif. Based on the
analogy that the pediocin PA-1 prepeptide is 80% active (Sect. 4.3.1), it is
therefore feasible that despite being exported by PcfD with an intact GG
motif, propionicin F peptide itself is inherently biologically active. However,
it is tempting to speculate whether a further processed propionicin F (i.e.,
minus the putative GG-containing signal peptide) may have higher levels of
antimicrobial activity.

4.3.3.2 Bacteriocin-like Peptides as Signaling Molecules

As described in Section 4.2.1, bacteriocins such as nisin can influence expres-
sion of their biosynthetic operons through binding to their cognate two-
component histidine kinase-response regulator signal transduction systems,
which in turn regulates transcription of the bacteriocin operon. In recent
years, it has become apparent that such “three-component regulatory mech-
anisms” are also involved in cell density-dependent phenomena (quorum
sensing) and non-lantibiotic bacteriocin biosynthesis (see reviews by
Kleerebezem and Quadri 2001; Morrison 2002). Activation of these processes
is usually mediated by the binding of a specific inducing peptide to its cog-
nate sensor histidine kinase, which in turn phosphorylates a dedicated
response regulator. The latter then proceeds to up- or down-regulate the
expression of genes under its control. Interestingly, the inducing peptides,
which do not appear to exhibit intrinsic inhibitory activity, are synthesized as
prepeptides containing signal peptides with double-glycine motifs. Secretion
of these prepeptides into the extracellular milieu is invariably facilitated by
dedicated ABC transporters not unlike those involved in the export of
pediocin-like peptides (Sect. 4.3.1).

72 Nicholas C.K. Heng et al.

Page 153

-enterococcal cytolysin: 55, 63, 64
-lacticin 3147: 55, 62

-mersacidin: 55, 61
-mutacin: 2, 49-51, 56, 67, 71, 73,

141
-nisin: 2, 47, 50, 51, 53, 54, 56-59, 61, 65,

72, 82, 92, 100, 138
-salivaricin A: 54, 59, 60
-streptococcin A-FF22 (SA-FF22): 54, 59
-subtype AI (nisin-like): 53, 54, 56-58
-subtype AII (SA-FF22-like): 54, 58-61
-type B (globular): 55, 61, 62
-type C (multi-component): 55, 62-64

M
marcescin: 20, 21, 29, 36-38

-A: 29, 36, 38
metapopulation: 119
microcins: 8, 11-17, 20, 46, 66

-B17: 11, 13
-C7: 11, 13
-H47: 11-13, 16
-J25: 11-13
-L: 11, 13
-M: 11-13, 16
-V: 10-13, 16, 17

model:
-mathematical: 7-8, 15, 113-120, 122,

130-132, 140
-simulation: 118, 120, 122-130
-community: 112, 114, 117, 118, 121,

125, 128, 130
mutation: 25-27, 29, 60, 106, 119, 125-126,

128

N
niche construction (or ecosystem

engineering): 129-131

O
oral cavity: 47, 60, 64, 140

P
polymorphism: 25
Pseudomonas: 20, 21
pyocins: 2, 20-25, 28, 29, 31, 35, 37-40

-AP41: 31, 33, 35, 40
-F-type: 21, 40
-F2: 22

-R-type: 21, 40
-R2: 20, 22
-S-type: 21, 22, 24, 29, 37
-S1: 24, 28, 33, 35, 38, 40
-S2: 24, 25, 31, 33, 35, 38, 40
-S3: 25, 35, 40
-S5: 22, 24

Q
quorum sensing: 63, 72, 73, 135-139

R
recombination: 25, 27-29, 38
regulation: 2, 37-38, 56, 59, 74, 102, 136,

138
resistance: 6, 10, 11, 16, 47, 53, 119, 120,

125-128
rock-paper-scissors (or non-transitivity):

14, 99, 119-128, 130

S
selection:

-positive: 25, 26
-diversifying: 25-29

sequence: 2, 19, 21, 22, 25, 30, 35, 37-41,
49, 50, 52, 53, 57-59, 67, 68, 72, 77,
79, 81, 82, 94, 98, 100, 102-105, 123

Serratia: 20-22, 28, 36-38
signal transduction: 54, 68, 70, 72-74, 135,

136, 138, 139
spatial structure: 117, 118, 120-130
Staphylococcus: 2, 46, 55, 61,

aureus: 47, 49, 55, 61, 67-71, 77, 78, 137
capitis: 77
epidermidis: 77
lugdunensis: 67, 70
simulans: 74, 75, 79

Streptococcus: 2, 57, 59, 66, 77, 80
agalactiae: 60
constellatus: 78
dygalactiae: 60, 75, 79
equi: 75, 77
gordonii: 49, 70, 73, 78, 137, 141
macedonicus: 49
milleri: 75, 78
mutans: 49-51, 55, 62, 67, 71, 73, 137,

141
pneumoniae: 73, 137
pyogenes: 49, 54, 57-60, 76, 79, 138, 141

Subject Index 149

Page 154

Streptococcus (Continued)
rattus: 63, 68
salivarius: 49-51, 54, 59-61, 67, 138,

140, 141

thermophilus: 67, 69
uberis: 49, 51, 54, 57, 66, 69, 80,

82, 83
sulfolobicin: 3, 93, 94, 106, 107

150 Subject Index

Similer Documents