Download Atmospheric Chemistry of Polyfluorinated Compounds: Long-lived Greenhouse Gases and ... PDF

TitleAtmospheric Chemistry of Polyfluorinated Compounds: Long-lived Greenhouse Gases and ...
TagsChemistry
LanguageEnglish
File Size10.4 MB
Total Pages247
Table of Contents
                            TABLE OF CONTENTS.pdf
	6.3 Results and Discussion        117
	6.3.1 Kinetics of reactions with Cl atoms     117
	7.3 Results and Discussion        138
	9.3 Results and Discussion        178
	Figure 7.1:
	Decay of 4:2 FTI versus CH3Cl and CH3OCHO in the presence of Cl atoms in 700 Torr of N2 at 295 ± 2 K.
	139
	Figure 7.2:
	Decay of 4:2 FTI versus C2H4 and C3H8 in the presence of OH radicals in 700 Torr of air diluent at 295 ± 2 K.
	140
	Figure 7.3:
	142
	Figure 7.4:
	143
	Figure 7.5:
	146
	Figure 7.6:
	149
CJY thesis part deux.pdf
		6.3 Results and Discussion
		6.3.1 Kinetics of reactions with Cl atoms
		7.3 Results and discussion
		Figure 7.1. Decay of 4:2 FTI versus CH3Cl and CH3OCHO in the presence of Cl atoms in 700 Torr of N2 at 295 ± 2 K.
		7.6 Sources Cited
		(1)   Martin, J.W.; Smithwick, M.M.; Braune, B.M.; Hoekstra, P.F.; Muir, D.C.G.; Mabury, S.A. Identification of long-chain perfluorinated acids in biota from the Canadian arctic. Environmental Science and Technology 2004, 38, 373-380.
		(2)   Yamashita, N.; Kannan, K.; Taniyasu, S.; Horii, Y.; Petrick, G.; Gamo, T. A global survey of perfluorinated acids in oceans. Marine Pollution Bulletin 2005, 51, 658-668.
		(3)   Prevedouros, K.; Cousins, I.T.; Buck, R.C.; Korzeniowski, S.H. Sources, fate and transport of perfluorocarboxylates. Environmental Science and Technology 2006, 40, 32-44.
		(4)   Armitage, J.; Cousins, I.T.; Buck, R.C.; Prevedouros, K.; Russell, M.H.; Macleod, M.; Korzeniowski, S.H. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environmental Science and Technology 2006, 40, 6969-6975.
		(5)   Wania, F. Global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean. Environmental Science and Technology 2007, 41, 4529-4535.
		(6)   Ellis, D.A.; Martin, J.W.; De Silva, A.O.; Mabury, S.A.; Hurley, M.D.; Sulbaek Andersen, M.P.; Wallington, T.J. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids. Environmental Science and Technology 2004, 38, 3316-3321.
		(7)   Hurley, M.D.; Ball, J.C.; Wallington, T.J.; Sulbaek Andersen, M.P.; Ellis, D.A.; Martin, J.W.; Mabury, S.A. Atmospheric chemistry of 4:2 fluorotelomer alcohol: products and mechanism of Cl atom initiated oxidation. Journal of Physical Chemistry A 2004, 108, 5635-5642.
		(8)   Wallington, T.J.; Hurley, M.D.; Xia, J.; Wuebbles, D.J.; Sillman, S.; Ito, A.; Penner, J.E.; Ellis, D.A.; Martin, J.W.; Mabury, S.A.; Nielsen, C.J.; Sulbaek Andersen, M.P. Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol. Environmental Science and Technology 2006, 40, 924-930.
		(9)   Butt, C.M.; Muir, D.C.G.; Stirling, I.; Kwan, M.; Mabury, S.A. Rapid response of Arctic ringed seals to changes in perfluoroalkyl production. Environmental Science and Technology 2007, 41, 42-49.
		(10)   Young, C.J.; Furdui, V.I.; Franklin, J.; Koerner, R.M.; Muir, D.C.G.; Mabury, S.A. Perfluorinated acids in Arctic snow: New evidence for atmospheric formation. Environmental Science and Technology 2007.
		(11)   Martin, J.W.; Ellis, D.A.; Mabury, S.A.; Hurley, M.D.; Wallington, T.J. Atmospheric chemistry of perfluoroalkanesulfonamides: Kinetic and product studies of the OH and Cl atom initiated oxidiation of N-ethyl perfluorobutanesulfonamide. Environmental Science and Technology 2006, 40, 864-872.
		(12)   D'eon, J.C.; Hurley, M.D.; Wallington, T.J.; Mabury, S.A. Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: Kinetics and mechanism of reaction with OH. Environmental Science and Technology 2006, 40, 1862-1868.
		(13)   Nakayama, T.; Takahashi, K.; Matsumi, Y.; Toft, A.; Sulbaek Andersen, M.P.; Nielsen, O.J.; Waterland, R.L.; Buck, R.C.; Hurley, M.D.; Wallington, T.J. Atmospheric chemistry of CF3CH=CH2 and C4F9CH=CH2: Products of the gas-phase reactions with Cl atoms and OH radicals. Journal of Physical Chemistry A 2007, 111, 909-915.
		(14)   Howard, P.H.; Meylan, W. 2007. EPA Great Lakes Study for Identification of PBTs to Develop Analytical Methods: Selection of Additional PBTs - Interim Report, EPA Contract No. EP-W-04-019.
		(15)   DuPont global PFOA strategy - Comprehensive source reduction, Presented to the USEPA OPPT, January 31, 2005.
		(16)   Wallington, T.J.; Japar, S.M. Fourier transform infrared kinetic studies of the reaction of HONO with HNO3, NO3 and N2O5 at 295 K. Journal of Atmospheric Chemistry 1989, 9, 399-409.
		(17)   Taniguchi, N.; Wallington, T.J.; Hurley, M.D.; Guschin, A.G.; Molina, L.T.; Molina, M.J. Atmospheric chemistry of C2F5C(O)CF(CF3)2: Photolysis and reaction with Cl atoms, OH radicals, and ozone. Journal of Physical Chemistry A 2003, 107, 2674-2679.
		(18)   Madronich, S.; Flocke, S. In Handbook of Environmental Chemistry; Boule, P., Ed.; Springer: Heidelberg, 1998.
		(19)   Majer, J.R.; Simons, J.P. Adv Photochem 1964, 1, 137.
		(20)   Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Rossi, M.J.; Troe, J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species. Atmospheric Chemistry and Physics 2006, 6, 3625-4055.
		(21)   Wallington, T.J.; Hurley, M.D.; Haryanto, A. Kinetics of the gas phase reactions of chlorine atoms with a series of formates. Chemical Physics Letters 2006, 432, 57-61.
		(22)   Calvert, J.G.; Atkinson, R.; Kerr, J.A.; Madronich, S.; Moortgat, G.K.; Wallington, T.J.; Yarwood, G. The Mechanisms of Atmospheric Oxidation of the Alkenes; Oxford University Press: Oxford, 2000.
		(23)   Kwok, E.S.C.; Atkinson, R. Estimation of hydroxyl radical reaction rate constants for gas-phse organic compounds using a structure-reactivity relationship--an update. Atmospheric Environment 1995, 29, 1685-1695.
		(24)   Carl, S.A.; Crowley, J.N. 298 K rate coefficients for the reaction of OH with i-C3H7I, n-C3H7I and C3H8. Atmospheric Chemistry and Physics 2001, 1, 1-7.
		(25)   Prinn, R.G.; Huang, J.; Weiss, R.F.; Cunnold, D.M.; Fraser, P.J.; Simmonds, P.G.; McCulloch, A.; Salameh, P.; O'Doherty, S.; Wang, R.H.J.; Porter, L.; Miller, B.R. Evidence for substantial variation of atmospheric hydroxyl radicals in the past two decades. Science 2001, 292, 1882-1888.
		(26)   Bilde, M.; Wallington, T.J. Atmospheric chemistry of CH3I: Reaction with atomic chlorine at 1 - 700 Torr total pressure and 295K. Journal of Physical Chemistry 1998, 102, 1550.
		(27)   Roehl, C.M.; Burkholder, J.B.; Moortgat, G.K.; Ravishankara, A.R.; Crutzen, P.J. Temperature dependence of UV absorption cross sections and atmospheric implications of several alkyl iodides. Journal of Geophysical Research 1997, 102, 12,819-812,829.
		(28)   Rattigan, O.V.; Shallcross, D.E.; Cox, R.A. UV absorption cross-sections and atmospheric photolysis rates of CF3I, CH3I, C2H5I and CH2ICl. Journal of the Chemical Society, Faraday Transactions 1997, 96, 2839-2846.
		(29)   Metcalfe, J.; Phillips, D. Photophysical processes in fluorinated acetones. Journal of the Chemical Society, Faraday Transactions 2 1976, 2, 1574-1583.
		(30)   Calvert, J.G.; Derwent, R.G.; Orlando, J.J.; Tyndall, G.S.; Wallington, T.J. Mechanisms of Atmospheric Oxidation of the Alkanes; Oxford University Press, 2008.
		(31)   Chiappero, M.S.; Malanca, F.E.; Arguello, G.A.; Wooldridge, S.T.; Hurley, M.D.; Ball, J.C.; Wallington, T.J.; Waterland, R.L.; Buck, R.C. Atmospheric chemistry of perfluoroaldehydes (CxF2x+1CHO) and fluorotelomer aldehydes (CxF2x+1CH2CHO): Quantification of the important role of photolysis. Journal of Physical Chemistry A 2006, 110, 11944-11953.
		(32)   Solignac, G.; Mellouki, A.; Le Bras, G.; Barnes, I.; Benter, T. Reaction of Cl atoms with C6F13CH2OH, C6F13CHO and C3F7CHO. Journal of Physical Chemistry A 2006, 110, 4450-4457.
		(33)   Sehested, J.; Ellermann, T.; Nielsen, O.J.; Wallington, T.J.; Hurley, M.D. UV absorption spectrum, and kinetics and mechanism of the self reaction of CF3CF2O2 radicals in the gas phase at 295 K. International Journal of Chemical Kinetics 1993, 25, 701-717.
		(34)   Kelly, T.; Bossoutrot, V.; Magneron, I.; Wirtz, K.; Treacy, J.; Mellouki, A.; Sidebottom, H.; Le Bras, G. A kinetic and mechanistic study of the reactions of OH radicals and Cl atoms with 3,3,3-trifluoropropanol under atmospheric conditions. Journal of Physical Chemistry A 2005, 109, 347.
		(35)   Godwin, F.G.; Paterson, C.; Gory, P.A. Photofragmentation dynamics of n-C3H7I and i-C3H7I at 248 nm Molecular Physics 1987, 61, 827.
		(36)   Hunter, T.F.; Lunt, S.; Kristjansson, K.S. Photofragmentation of CH3I, CD3I and CF3I. Formation of I(2P1/2) as a function of wavelength. Journal of the Chemical Society, Faraday Transactions 2 1983, 79, 303-316.
		(37)   Shepson, P.B.; Heicklen, J. Photooxidation of ethyl iodide at 22oC. Journal of Physical Chemistry 1981, 85, 2691.
		8.3 Results and Discussion
		8.3.1 Alcohol-water complexes
		9.3 Results and Discussion
TABLE OF CONTENTS.pdf
	6.3 Results and Discussion        117
	6.3.1 Kinetics of reactions with Cl atoms     117
	7.3 Results and Discussion        138
	9.3 Results and Discussion        178
	Figure 7.1:
	Decay of 4:2 FTI versus CH3Cl and CH3OCHO in the presence of Cl atoms in 700 Torr of N2 at 295 ± 2 K.
	139
	Figure 7.2:
	Decay of 4:2 FTI versus C2H4 and C3H8 in the presence of OH radicals in 700 Torr of air diluent at 295 ± 2 K.
	140
	Figure 7.3:
	142
	Figure 7.4:
	143
	Figure 7.5:
	146
	Figure 7.6:
	149
TABLE OF CONTENTS.pdf
	6.3 Results and Discussion        117
	6.3.1 Kinetics of reactions with Cl atoms     117
	7.3 Results and Discussion        138
	9.3 Results and Discussion        178
	Figure 7.1:
	Decay of 4:2 FTI versus CH3Cl and CH3OCHO in the presence of Cl atoms in 700 Torr of N2 at 295 ± 2 K.
	139
	Figure 7.2:
	Decay of 4:2 FTI versus C2H4 and C3H8 in the presence of OH radicals in 700 Torr of air diluent at 295 ± 2 K.
	140
	Figure 7.3:
	142
	Figure 7.4:
	143
	Figure 7.5:
	146
	Figure 7.6:
	149
                        

Similer Documents