Download Atmospheric Chemistry of Polyfluorinated Compounds: Long-lived Greenhouse Gases and ... PDF

TitleAtmospheric Chemistry of Polyfluorinated Compounds: Long-lived Greenhouse Gases and ...
TagsChemistry
LanguageEnglish
File Size10.4 MB
Total Pages247
Table of Contents
                            TABLE OF CONTENTS.pdf
	6.3 Results and Discussion        117
	6.3.1 Kinetics of reactions with Cl atoms     117
	7.3 Results and Discussion        138
	9.3 Results and Discussion        178
	Figure 7.1:
	Decay of 4:2 FTI versus CH3Cl and CH3OCHO in the presence of Cl atoms in 700 Torr of N2 at 295 ± 2 K.
	139
	Figure 7.2:
	Decay of 4:2 FTI versus C2H4 and C3H8 in the presence of OH radicals in 700 Torr of air diluent at 295 ± 2 K.
	140
	Figure 7.3:
	142
	Figure 7.4:
	143
	Figure 7.5:
	146
	Figure 7.6:
	149
CJY thesis part deux.pdf
		6.3 Results and Discussion
		6.3.1 Kinetics of reactions with Cl atoms
		7.3 Results and discussion
		Figure 7.1. Decay of 4:2 FTI versus CH3Cl and CH3OCHO in the presence of Cl atoms in 700 Torr of N2 at 295 ± 2 K.
		7.6 Sources Cited
		(1)   Martin, J.W.; Smithwick, M.M.; Braune, B.M.; Hoekstra, P.F.; Muir, D.C.G.; Mabury, S.A. Identification of long-chain perfluorinated acids in biota from the Canadian arctic. Environmental Science and Technology 2004, 38, 373-380.
		(2)   Yamashita, N.; Kannan, K.; Taniyasu, S.; Horii, Y.; Petrick, G.; Gamo, T. A global survey of perfluorinated acids in oceans. Marine Pollution Bulletin 2005, 51, 658-668.
		(3)   Prevedouros, K.; Cousins, I.T.; Buck, R.C.; Korzeniowski, S.H. Sources, fate and transport of perfluorocarboxylates. Environmental Science and Technology 2006, 40, 32-44.
		(4)   Armitage, J.; Cousins, I.T.; Buck, R.C.; Prevedouros, K.; Russell, M.H.; Macleod, M.; Korzeniowski, S.H. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environmental Science and Technology 2006, 40, 6969-6975.
		(5)   Wania, F. Global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean. Environmental Science and Technology 2007, 41, 4529-4535.
		(6)   Ellis, D.A.; Martin, J.W.; De Silva, A.O.; Mabury, S.A.; Hurley, M.D.; Sulbaek Andersen, M.P.; Wallington, T.J. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids. Environmental Science and Technology 2004, 38, 3316-3321.
		(7)   Hurley, M.D.; Ball, J.C.; Wallington, T.J.; Sulbaek Andersen, M.P.; Ellis, D.A.; Martin, J.W.; Mabury, S.A. Atmospheric chemistry of 4:2 fluorotelomer alcohol: products and mechanism of Cl atom initiated oxidation. Journal of Physical Chemistry A 2004, 108, 5635-5642.
		(8)   Wallington, T.J.; Hurley, M.D.; Xia, J.; Wuebbles, D.J.; Sillman, S.; Ito, A.; Penner, J.E.; Ellis, D.A.; Martin, J.W.; Mabury, S.A.; Nielsen, C.J.; Sulbaek Andersen, M.P. Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol. Environmental Science and Technology 2006, 40, 924-930.
		(9)   Butt, C.M.; Muir, D.C.G.; Stirling, I.; Kwan, M.; Mabury, S.A. Rapid response of Arctic ringed seals to changes in perfluoroalkyl production. Environmental Science and Technology 2007, 41, 42-49.
		(10)   Young, C.J.; Furdui, V.I.; Franklin, J.; Koerner, R.M.; Muir, D.C.G.; Mabury, S.A. Perfluorinated acids in Arctic snow: New evidence for atmospheric formation. Environmental Science and Technology 2007.
		(11)   Martin, J.W.; Ellis, D.A.; Mabury, S.A.; Hurley, M.D.; Wallington, T.J. Atmospheric chemistry of perfluoroalkanesulfonamides: Kinetic and product studies of the OH and Cl atom initiated oxidiation of N-ethyl perfluorobutanesulfonamide. Environmental Science and Technology 2006, 40, 864-872.
		(12)   D'eon, J.C.; Hurley, M.D.; Wallington, T.J.; Mabury, S.A. Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: Kinetics and mechanism of reaction with OH. Environmental Science and Technology 2006, 40, 1862-1868.
		(13)   Nakayama, T.; Takahashi, K.; Matsumi, Y.; Toft, A.; Sulbaek Andersen, M.P.; Nielsen, O.J.; Waterland, R.L.; Buck, R.C.; Hurley, M.D.; Wallington, T.J. Atmospheric chemistry of CF3CH=CH2 and C4F9CH=CH2: Products of the gas-phase reactions with Cl atoms and OH radicals. Journal of Physical Chemistry A 2007, 111, 909-915.
		(14)   Howard, P.H.; Meylan, W. 2007. EPA Great Lakes Study for Identification of PBTs to Develop Analytical Methods: Selection of Additional PBTs - Interim Report, EPA Contract No. EP-W-04-019.
		(15)   DuPont global PFOA strategy - Comprehensive source reduction, Presented to the USEPA OPPT, January 31, 2005.
		(16)   Wallington, T.J.; Japar, S.M. Fourier transform infrared kinetic studies of the reaction of HONO with HNO3, NO3 and N2O5 at 295 K. Journal of Atmospheric Chemistry 1989, 9, 399-409.
		(17)   Taniguchi, N.; Wallington, T.J.; Hurley, M.D.; Guschin, A.G.; Molina, L.T.; Molina, M.J. Atmospheric chemistry of C2F5C(O)CF(CF3)2: Photolysis and reaction with Cl atoms, OH radicals, and ozone. Journal of Physical Chemistry A 2003, 107, 2674-2679.
		(18)   Madronich, S.; Flocke, S. In Handbook of Environmental Chemistry; Boule, P., Ed.; Springer: Heidelberg, 1998.
		(19)   Majer, J.R.; Simons, J.P. Adv Photochem 1964, 1, 137.
		(20)   Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Rossi, M.J.; Troe, J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species. Atmospheric Chemistry and Physics 2006, 6, 3625-4055.
		(21)   Wallington, T.J.; Hurley, M.D.; Haryanto, A. Kinetics of the gas phase reactions of chlorine atoms with a series of formates. Chemical Physics Letters 2006, 432, 57-61.
		(22)   Calvert, J.G.; Atkinson, R.; Kerr, J.A.; Madronich, S.; Moortgat, G.K.; Wallington, T.J.; Yarwood, G. The Mechanisms of Atmospheric Oxidation of the Alkenes; Oxford University Press: Oxford, 2000.
		(23)   Kwok, E.S.C.; Atkinson, R. Estimation of hydroxyl radical reaction rate constants for gas-phse organic compounds using a structure-reactivity relationship--an update. Atmospheric Environment 1995, 29, 1685-1695.
		(24)   Carl, S.A.; Crowley, J.N. 298 K rate coefficients for the reaction of OH with i-C3H7I, n-C3H7I and C3H8. Atmospheric Chemistry and Physics 2001, 1, 1-7.
		(25)   Prinn, R.G.; Huang, J.; Weiss, R.F.; Cunnold, D.M.; Fraser, P.J.; Simmonds, P.G.; McCulloch, A.; Salameh, P.; O'Doherty, S.; Wang, R.H.J.; Porter, L.; Miller, B.R. Evidence for substantial variation of atmospheric hydroxyl radicals in the past two decades. Science 2001, 292, 1882-1888.
		(26)   Bilde, M.; Wallington, T.J. Atmospheric chemistry of CH3I: Reaction with atomic chlorine at 1 - 700 Torr total pressure and 295K. Journal of Physical Chemistry 1998, 102, 1550.
		(27)   Roehl, C.M.; Burkholder, J.B.; Moortgat, G.K.; Ravishankara, A.R.; Crutzen, P.J. Temperature dependence of UV absorption cross sections and atmospheric implications of several alkyl iodides. Journal of Geophysical Research 1997, 102, 12,819-812,829.
		(28)   Rattigan, O.V.; Shallcross, D.E.; Cox, R.A. UV absorption cross-sections and atmospheric photolysis rates of CF3I, CH3I, C2H5I and CH2ICl. Journal of the Chemical Society, Faraday Transactions 1997, 96, 2839-2846.
		(29)   Metcalfe, J.; Phillips, D. Photophysical processes in fluorinated acetones. Journal of the Chemical Society, Faraday Transactions 2 1976, 2, 1574-1583.
		(30)   Calvert, J.G.; Derwent, R.G.; Orlando, J.J.; Tyndall, G.S.; Wallington, T.J. Mechanisms of Atmospheric Oxidation of the Alkanes; Oxford University Press, 2008.
		(31)   Chiappero, M.S.; Malanca, F.E.; Arguello, G.A.; Wooldridge, S.T.; Hurley, M.D.; Ball, J.C.; Wallington, T.J.; Waterland, R.L.; Buck, R.C. Atmospheric chemistry of perfluoroaldehydes (CxF2x+1CHO) and fluorotelomer aldehydes (CxF2x+1CH2CHO): Quantification of the important role of photolysis. Journal of Physical Chemistry A 2006, 110, 11944-11953.
		(32)   Solignac, G.; Mellouki, A.; Le Bras, G.; Barnes, I.; Benter, T. Reaction of Cl atoms with C6F13CH2OH, C6F13CHO and C3F7CHO. Journal of Physical Chemistry A 2006, 110, 4450-4457.
		(33)   Sehested, J.; Ellermann, T.; Nielsen, O.J.; Wallington, T.J.; Hurley, M.D. UV absorption spectrum, and kinetics and mechanism of the self reaction of CF3CF2O2 radicals in the gas phase at 295 K. International Journal of Chemical Kinetics 1993, 25, 701-717.
		(34)   Kelly, T.; Bossoutrot, V.; Magneron, I.; Wirtz, K.; Treacy, J.; Mellouki, A.; Sidebottom, H.; Le Bras, G. A kinetic and mechanistic study of the reactions of OH radicals and Cl atoms with 3,3,3-trifluoropropanol under atmospheric conditions. Journal of Physical Chemistry A 2005, 109, 347.
		(35)   Godwin, F.G.; Paterson, C.; Gory, P.A. Photofragmentation dynamics of n-C3H7I and i-C3H7I at 248 nm Molecular Physics 1987, 61, 827.
		(36)   Hunter, T.F.; Lunt, S.; Kristjansson, K.S. Photofragmentation of CH3I, CD3I and CF3I. Formation of I(2P1/2) as a function of wavelength. Journal of the Chemical Society, Faraday Transactions 2 1983, 79, 303-316.
		(37)   Shepson, P.B.; Heicklen, J. Photooxidation of ethyl iodide at 22oC. Journal of Physical Chemistry 1981, 85, 2691.
		8.3 Results and Discussion
		8.3.1 Alcohol-water complexes
		9.3 Results and Discussion
TABLE OF CONTENTS.pdf
	6.3 Results and Discussion        117
	6.3.1 Kinetics of reactions with Cl atoms     117
	7.3 Results and Discussion        138
	9.3 Results and Discussion        178
	Figure 7.1:
	Decay of 4:2 FTI versus CH3Cl and CH3OCHO in the presence of Cl atoms in 700 Torr of N2 at 295 ± 2 K.
	139
	Figure 7.2:
	Decay of 4:2 FTI versus C2H4 and C3H8 in the presence of OH radicals in 700 Torr of air diluent at 295 ± 2 K.
	140
	Figure 7.3:
	142
	Figure 7.4:
	143
	Figure 7.5:
	146
	Figure 7.6:
	149
TABLE OF CONTENTS.pdf
	6.3 Results and Discussion        117
	6.3.1 Kinetics of reactions with Cl atoms     117
	7.3 Results and Discussion        138
	9.3 Results and Discussion        178
	Figure 7.1:
	Decay of 4:2 FTI versus CH3Cl and CH3OCHO in the presence of Cl atoms in 700 Torr of N2 at 295 ± 2 K.
	139
	Figure 7.2:
	Decay of 4:2 FTI versus C2H4 and C3H8 in the presence of OH radicals in 700 Torr of air diluent at 295 ± 2 K.
	140
	Figure 7.3:
	142
	Figure 7.4:
	143
	Figure 7.5:
	146
	Figure 7.6:
	149
                        
Document Text Contents
Page 1

ATMOSPHERIC CHEMISTRY OF POLYFLUORINATED COMPOUNDS:

LONG-LIVED GREEN HOUSE GASES AND

SOURCES OF PERFLUORINATED ACIDS







by







Cora J. Young





















A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy

Department of Chemistry

University of Toronto



© Copyright by Cora J. Young 2010

Page 2

Atmospheric chemistry of polyfluorinated compounds: Long-lived greenhouse gases and

sources of perfluorinated acids

Doctor of Philosophy Degree, 2010

Cora J. Young

Department of Chemistry, University of Toronto





ABSTRACT



Fluorinated compounds are environmentally persistent and have been demonstrated to

bioaccumulate and contribute to climate change. The focus of this work was to better

understand the atmospheric chemistry of poly- and per-fluorinated compounds in order to

appreciate their impacts on the environment. Several fluorinated compounds exist for which

data on climate impacts do not exist. Radiative efficiencies (REs) and atmospheric lifetimes of

two new long-lived greenhouse gases (LLGHGs) were determined using smog chamber

techniques: perfluoropolyethers and perfluoroalkyl amines. Through this, it was observed that

RE was not directly related to the number of carbon-fluorine bonds. A structure-activity

relationship was created to allow the determination of RE solely from the chemical structure of

the compound. Also, a novel method was developed to detect polyfluorinated LLGHGs in the

atmosphere. Using carbotrap, thermal desorption and cryogenic extraction coupled to GC-MS,

atmospheric measurements can be made for a number of previously undetected compounds. A

perfluoroalkyl amine was detected in the atmosphere using this technique, which is the

compound with the highest RE ever detected in the atmosphere.

Perfluorocarboxylic acids (PFCAs) are water soluble and non-volatile, suggesting they

are not susceptible to long-range transport. A hypothesis was derived to explain the ubiquitous

distribution of these compounds involving atmospheric formation of PFCAs from volatile

precursors. Using smog chamber techniques with offline analysis, perfluorobutenes and

fluorotelomer iodides were shown to yield PFCAs from atmospheric oxidation.

Dehydrofluorination of perfluorinated alcohols (PFOHs) is poorly understood in the mechanism

of PFCA atmospheric formation. Using density functional techniques, overtone-induced

photolysis was shown to lead to dehydrofluorination of PFOHs. In the presence of water, this

mechanism could be a sink of PFOHs in the atmosphere. Confirmation of the importance of

volatile precursors was derived from examination of snow from High Arctic ice caps. This

ii

Page 123

99

(13) Gaussian 03, Revision B.03. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.;
Robb, M.A.; Cheeseman, J.R.; Montgomery, J., J. A.; Vreven, T.; Kudin, K.N.; Burant, J.C.;
Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.;
Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.;
Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala,
P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich,
S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.;
Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.;
Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham,
M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.;
Wong, M.W.; Gonzalez, C.; Pople, J.A. Gaussian, Inc., Wallingford, CT, 2004.

(14) Pinnock, S.; Hurley, M.D.; Shine, K.P.; Wallington, T.J.; Smyth, T.J. Radiative forcing of
climate by hydrochlorofluorocarbons and hydrofluorocarbons. Journal of Geophysical Research
1995, 100, 23227-23238.

(15) Heathfield, A.E.; Anastasi, C.; McCulloch, A.; Nicolaisen, F.M. Integrated infrared
absorption coefficients of several partially fluorinated ether compounds: CF3OCCF2H,
CF2HOCF2H, CH3OCF2CF2H, CH3OCF2CFClH, CH3CH2OCF2CF2H, CF3CH2OCF2CF2H and
CH2=CHCH2OCF2CF2H. Atmospheric Environment 1998, 32, 2825-2833.

(16) Oyaro, N.; Sellevag, S.R.; Nielsen, C.J. Study of the OH and Cl-initiated oxidation, IR
absorption cross-section, radiative forcing, and global warming potential of four C4-
hydrofluoroethers. Environmental Science and Technology 2004, 38, 5567-5576.

(17) Oyaro, N.; Sellevag, S.R.; Nielsen, C.J. Atmospheric chemistry of hydrofluoroethers:
Reaction of a series of hydrofluoroethers with OH radicals and Cl atoms, atmospheric lifetimes,
and global warming potentials. Journal of Physical Chemistry A 2005, 109, 337-346.

(18) Ninomiya, Y.; Kawasaki, M.; Gushin, A.; Molina, L.T.; Molina, M.; Wallington, T.J.
Atmospheric chemistry of n-C3F7OCH3: Reaction with OH radicals and Cl atoms and
atmospheric fate of n-C3F7OCH2O. Environmental Science and Technology 2000, 34, 2973-
2978.

(19) Good, D.A.; Francisco, J.S. Structure and vibrational spectra of chlorofluorocarbon
substitutes: An experimental and ab initio study of fluorinated ethers CHF2OCF3 (E125),
CHF2OCHF2 (E134), and CH3OCF3 (E143A). Journal of Physical Chemistry A 1998, 102,
1854-1864.

(20) Christidis, N.; Hurley, M.D.; Pinnock, S.; Shine, K.P.; Wallington, T.J. Radiative forcing
of climate change by CFC-11 and possible CFC replacements. Journal of Geophysical Research
1997, 102, 19,597-519,609.

(21) Sulbaek Andersen, M.P.; Hurley, M.D.; Wallington, T.J.; Blandini, F.; Jensen, N.R.;
Librando, V.; Hjorth, J.; Marchionni, G.; Avataneo, M.; Visca, M.; Nicolaisen, F.M.; Nielsen,
O.J. Atmospheric chemistry of CH3O(CF2CF2)nCH3 (n=1-3): Kinetics and mechanism of

Page 124

100

oxidation initiated by Cl atoms and OH radicals, IR spectra and global warming potentials.
Journal of Physical Chemistry A 2004, 108, 1964-1972.

(22) Wallington, T.J.; Hurley, M.D.; Nielson, O.J.; Sulbaek Andersen, M.P. Atmospheric
chemistry of CF3CFHCF2OCF3 and CF3CFHCF2OCF2H: Reaction with Cl atoms and OH
radicals, degradation mechanism and global warming potentials. Journal of Physical Chemistry
A 2004, 108, 11333-11338.

(23) Sulbaek Andersen, M.P.; Nielsen, O.J.; Wallington, T.J.; Hurley, M.D.; DeMore, W.B.
Atmospheric chemistry of CF3OCF2CF2H and CF3OC(CF3)2H: Reaction with Cl atoms and OH
radicals, degradation mechanism, global warming potentials, and empirical relationship between
k(OH) and k(Cl) for organic compounds. Journal of Physical Chemistry A 2005, 109, 3926-
3934.

(24) Orkin, V.L.; Villenave, E.; Huie, R.E.; Kurylo, M.J. Atmospheric lifetimes and global
warming potentials of hydrofluoroethers: Reactivity toward OH, UV spectra, and IR absorption
cross sections. Journal of Physical Chemistry A 1999, 103, 9770-9779.

(25) Sihra, K.; Hurley, M.D.; Shine, K.P.; Wallington, T.J. Updated radiative forcing estimates
of 65 halocarbons and nonmethane hydrocarbons. Journal of Geophysical Research 2001, 106,
20493-20505.

(26) Smart, B.E. In Molecular Structure and Energetics; Liebman, J.F., Greenberg, A., Eds.;
VCH Publishers: Deerfield Beach, FL, 1986; Vol. 3.

(27) Lazarou, Y.G.; Papagiannakopoulos, P. Theoretical investigation of the thermochemistry
of hydrofluoroethers. Chemical Physical Letters 1999, 301, 19-28.

(28) Smart, B.E. In Organofluorine chemistry: Principles and commercial applications;
Banks, R.E., Smart, B.E., Tatlow, J.C., Eds.; Plenum Press: New York, NY, 1994.

Page 246

222

a)

10-4 Concentration ratio of Na+ to PFOA

0 20 40 60 80

D
ep

th
(

cm
)

0

200

400

600

2005

2004

2003

2002
2001
2000
1999
1998

1997
1996

Y
ea

r















b)

Na+ Concentration ( g cm-3)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

P
F

O
A

C
on

ce
nt

ra
tio

n
(f

g
cm

-3
)

0

50

100

150

200

250

300

350

m = -769
r ² = 0.016















Figure E.6: (a) concentration ratio of sodium to PFOA with depth on the Devon Ice Cap and

(b) correlation between PFOA and sodium concentrations on Devon Ice Cap.

Page 247

223

PFDA concentration (pg L-1 snow)

0 5 10 15 20 25

P
F

N
A

c
o
n
ce

n
tr

a
tio

n
(

p
g
L

-1
s

n
o
w

)

0

50

100

150

200

250

300

m = 9.34
r ² = 0.73

PFOS concentration (pg L-1 snow)

0 50 100 150 200 250 300

P
F

N
A

c
o
n
ce

n
tr

a
tio

n
(

p
g
L

-1
s

n
o
w

)

0

20

40

60

80

100

m = -0.02
r ² = 0.004



PFOS concentration (pg L-1 snow)

0 20 40 60 80 100 120 140 160

P
F

O
A

c
o

n
ce

n
tr

a
tio

n
(

p
g

L
-1

s
n
o
w

)

0

20

40

60

80

100

m = 0.24
r ² = 0.30











Figure E.7: Correlations between PFA concentrations on Devon Ice Cap.

E.3 Sources Cited

(1) Furdui, V. I.; Crozier, P. W.; Reiner, E. J.; Mabury, S. A. Organohalogen Compounds
2006, 211-214.

(2) Hansen, K. J.; Clemen, L. A.; Ellefson, M. E.; Johnson, H. O. Environmental Science and
Technology 2001, 35, 766-770.

Similer Documents