Download A light-matter interface based on ion Coulomb crystals in an optical cavity PDF

TitleA light-matter interface based on ion Coulomb crystals in an optical cavity
LanguageEnglish
File Size3.8 MB
Total Pages203
Table of Contents
                            Acknowledgements
List of publications
Contents
Introduction
Ion Coulomb crystals in a linear Paul trap
	Principle of a linear Paul trap
	Laser cooling of 40Ca+ ions
	The physics of ion Coulomb crystals
Cavity Quantum Electrodynamics
	Optical cavities
	Two-level atoms interacting with a single cavity field mode
	The effect of motion
Experimental setup
	Overview
	The linear Paul trap
	Laser system
	Imaging and fluorescence detection systems
	The optical cavity
	Overlapping cavity and trap axis
	Calibration of the trap
	Probing the cavity
	Data acquisition
Realization of collective strong coupling
	Introduction
	The effective number of ions
	Experimental sequence
	Absorption profile and resonance shift
	Vacuum Rabi splitting spectrum
	Scaling with the number of ions
	Coherence between collective Zeeman substates
	Long term stability
	Conclusion
Coupling to different transverse cavity modes
	Introduction
	Theoretical expectation
	Experimental setup
	Mapping out the transverse cavity mode profiles
	Effects of the size of the crystal on the cavity coupling
	Coupling with large crystals
	Conclusion
Noninvasive spectroscopy of vibrational modes
	Introduction
	Theoretical model
	Experimental results
	Outlook and Applications
	Conclusion
Cavity electromagnetically induced transparency
	Introduction
	Three-level atoms in a cavity
	Experimental setup
	Experimental results
	Conclusion
All optical switching
	Introduction
	Four-level atoms in a cavity
	Experimental realization
	Conclusion
Summary and Outlook
The 40Ca+ ion
	Transition wavelengths and decay rates
	Clebsch-Gordan coefficients
	Zeeman-splitting
	Rabi frequency
	Single ion coupling strength
Legendre functions
EIT: Adiabatic elimination for an intracavity control field
Cavity EIT with well localized atoms
Bibliography
                        
Document Text Contents
Page 202

http://dx.doi.org/10.1103/PhysRevLett.90.197902
http://dx.doi.org/10.1103/PhysRevLett.97.023605
http://dx.doi.org/10.1038/nphys466
http://dx.doi.org/10.1038/nphys462
http://dx.doi.org/10.1103/PhysRevA.46.R6801
http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1038/nature06274
http://dx.doi.org/10.1038/nphys940
http://dx.doi.org/10.1103/PhysRevLett.91.093601
http://dx.doi.org/10.1103/PhysRevLett.70.271
http://dx.doi.org/10.1103/PhysRevLett.75.4710

Page 203

Bibliography

[216] J. J. Sakurai,Modern Quantum Mechanics, Revised Edition, Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1994.

[217] I. Bronstein, K. Semendjajew,Taschenbuch der Mathematik, 25th Edition, B.G.
Teubner Verlagsgesellschaft, Stuttgart, Leipzig, 1991.

[218] K. R. Hansen, K. Mølmer,Stationary light pulses in ultracold atomic gases, Phys-
ical Review A75 (2007) 065804+.
URL http://dx.doi.org/10.1103/PhysRevA.75.065804

[219] K. R. Hansen, K. Mølmer,Trapping of light pulses in ensembles of stationaryΛ
atoms, Physical Review A75 (2007) 053802+.
URL http://dx.doi.org/10.1103/PhysRevA.75.053802

193

http://dx.doi.org/10.1103/PhysRevA.75.065804
http://dx.doi.org/10.1103/PhysRevA.75.053802

Similer Documents